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HIGHLIGHTS

« We discussed and proposed a standardized analysis method for dynamic thermal imaging of actual patient data.

« We observed that selecting pixels with the same initial temperature is the key enabling tool in the analysis of the data.
« We extensively tested the methodology on more than 100 human subjects (ClinicalTrials ID number NCT02154451).

« We achieved a sensitivity of 95%, (95% CI: [87.8% 100.0%]), and a specificity of 83%, (95% CI: [73.4% 92.5%]).

ARTICLE INFO ABSTRACT
Article history: Dynamic thermal imaging (DTI) with infrared cameras is a non-invasive technique with the ability to
Received 19 August 2014 detect the most common types of skin cancer. We discuss and propose a standardized analysis method

Available online 2 October 2014 for DTI of actual patient data, which achieves high levels of sensitivity and specificity by judiciously

selecting pixels with the same initial temperature. This process compensates the intrinsic limitations
Keywords: of the cooling unit and is the key enabling tool in the DTI data analysis. We have extensively tested
Skin cancer the methodology on human subjects using thermal infrared image sequences from a pilot study
gg;f;?cﬂaiﬁil imaging conducted jointly with the University of New Mexico Dermatology Clinic in Albuquerque, New Mexico
Skin cancer screening (ClinicalTrials ID number NCT02154451). All individuals were adult subjects who were scheduled for
Non-invasive screening biopsy or adult volunteers with clinically diagnosed benign condition. The sample size was 102 subjects
for the present study. Statistically significant results were obtained that allowed us to distinguish
between benign and malignant skin conditions. The sensitivity and specificity was 95% (with a 95% con-
fidence interval of [87.8% 100.0%]) and 83% (with a 95% confidence interval of [73.4% 92.5%]), respectively,
and with an area under the curve of 95%. Our results lead us to conclude that the DTI approach in con-
junction with the judicious selection of pixels has the potential to provide a fast, accurate, non-contact,
and non-invasive way to screen for common types of skin cancer. As such, it has the potential to signif-
icantly reduce the number of biopsies performed on suspicious lesions.
© 2014 Elsevier B.V. All rights reserved.

1. Introduction occurrence of breast, prostate, lung and colon cancers [2]. Mela-
noma, which accounts for an estimated 4% of skin cancer cases,

Skin cancer is the most common form of cancer in the United is responsible for approximately 75% of all deaths from skin cancer.
States with over 3.5 million cases of skin cancer reported annually The total deaths in the United States due to melanomas and other

[1]. There is a higher incidence of skin cancer than the combined types of skin cancer are estimated to be more than 12,000 for 2014
[1].

Currently, the detection of melanoma relies on a subjective
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provides a qualitative guideline and it requires a trained specialist
to actually distinguish malignant lesions from benign nevi.
Moreover, the ABCDE approach has a relatively low specificity
(56-65%) and moderate sensitivity (47-89%) [3-5]. Since a false
negative could lead to metastatic cancer and death, excisional
biopsies are routinely performed even on lesions that are non-can-
cerous. For example, the number of biopsies undertaken in nine
geographical areas of the US between 1986 and 2001 is close to
60 for every melanoma detected [6].

Since biopsies are intrusive and can be painful, different non-
invasive techniques are being researched in order to minimize
the number of excess biopsies performed [7,8]. Some of these
techniques include multispectral (MS) imaging [9-11], digital der-
matoscopy and videodermatoscopy (sequential digital dermatos-
copy) [12,13], reflectance-mode confocal microscopy [14],
ultrasound [15,16], laser Doppler perfusion imaging [17], and opti-
cal coherence tomography (OCT) [18,19], to name a few. Currently,
there are two FDA-approved non-invasive imaging devices Mela-
Find™ and Vivosight Multi-Beam System™, which are based on
MS imaging and OCT, respectively. On one hand, the MelaFind
technology only works with pigmented melanomas and the speci-
ficity is as low as 9.5% [20]. On the other hand, Vivosight presents
sensitivity between 79% and 94% and specificity between 85% and
96% for non-melanoma skin cancer lesions [21] but the suspicious
lesion must be probed several times, which makes the acquisition
time prohibitively high.

In order to address this problem, different groups have investi-
gated the utilization of dynamic thermal imaging (DTI) for skin
cancer screening and diagnosis [22]. For example, Anbar [23]
described how changes in human skin temperature convey valu-
able physiological and pathophysiological information. Buzug
et al. [24] and Cetingul and Herman [25] studied the diagnosis of
BCC and MM lesions, respectively. Both used similar techniques,
requiring the cooling of the lesion to observe the warm-up pattern.
Their work established that the difference in the thermal recovery
may contain useful information that has the potential to non-inva-
sively differentiate malignant lesions from benign. Nevertheless,
there is not a standardized protocol to analyze the subject data
such that malignant lesions are identified with high sensitivity
while at the same time ensuring that benign lesions are identified
with high specificity.

In this paper, we address this problem by presenting a stan-
dardized analysis protocol of DTI that judiciously selects pixels
with the same initial temperature in order to compensate deficien-
cies in the cooling process, which, at the same time, is the key pro-
cess that enables the classification of the lesion condition with an
specificity >80% for a 95% of sensitivity. We evaluate its effective-
ness by presenting results from a cross-sectional sample of 102
subjects.

2. Material and methods
2.1. Data acquisition equipment

The data acquisition equipment consists of four components.
First, a cooling unit that is used to impart a temperature stimulus
to the lesion and the surrounding skin tissue; the cooling unit was
a Ranque-Hilsch vortex tube that generates an oil-free, moisture-
free, ultra-quiet air flow. Second, an infrared marker, which is used
for correction of involuntary movement of the subject (i.e., image
registration); the marker is a square piece of plastic with a square
opening in the middle. Third, the imaging portion of the system
consists of a commercial visible camera to capture a reference
image before the acquisition commences and a longwave infrared
(LWIR) camera to capture the thermal recovery of the skin after the
cool air is applied. The LWIR camera uses a 320 x 256 focal-plane

array (FPA) of quantum-well infrared photodetectors (QWIP) oper-
ating at 60 K. The noise equivalent temperature difference (NEDT)
of the FPA is 20 mK and the QWIP camera is fitted with a 50 mm, f/
2 LWIR lens, yielding an approximate spatial resolution of 300 pm
per pixel. The QWIP camera was chosen for our pilot study because
it has higher array uniformity, lower NETD and high spatial resolu-
tion as compared with other IR camera technologies [22,28].
Fourth, a custom computer program developed and coded by the
authors, which performs image registration and undertakes the
analysis of the subject data.

2.2. Imaging procedure

After informed consent, each subject was escorted to a desig-
nated room in the UNM Dermatology Clinic to perform the imaging
procedure. The temperature of the room was controlled to be
between 20 °C and 22 °C to make sure that all the patients were
at the same temperature before applying the cooling stimulus to
the area of interest. At the beginning of the procedure, a square
registration marker was placed around the lesion with the lesion
centered in the opening, as shown in Fig. 1. A visible image of
the lesion was then taken with the digital camera for reference
purposes. After collection of the visible image, a 15s infrared
image sequence of the marked area was collected to serve as a
baseline. Later, the subject’s skin within the marker opening was
cooled for 30 s using the cooling unit. After cooling, the exposed
area was allowed to warm up naturally to ambient temperature.
During the cooling and warm-up phases, thermal images of the
skin were captured for a total of 2 min at a rate of 60 frames per
second. All the thermal images were recorded using an uncom-
pressed 14-bit format. The total time required to complete the
imaging procedure was less than 5 min. If the subject was sched-
uled for a biopsy, the biopsy was performed following the data col-
lection by the attending dermatologist and sent to pathology for
diagnosis. The biopsy results were delivered to us within the next
two weeks following the imaging procedure.

2.3. Data processing

2.3.1. Data registration
Since involuntary movements cannot be avoided, image regis-
tration must be performed on the sequence of IR images. Moreover,
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Fig. 1. Example of one square plastic marker used in the data acquisition step; the
biggest rectangle that can be drawn within the opening of the marker is defined by
the points (imin,jmin) aNd (imax.jmax), labeled in the inset. The suspicious lesion is also
labeled and surrounded by the ellipse (light blue) drawn by the user. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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to correctly reference the lesion location (pigmented area) in the IR
sequence, the visible picture must also be spatially aligned with
respect to the IR sequence; therefore, the visible image is consid-
ered as an additional frame for the registration.

The registration is conducted as follows. First, we use the Harris
corner detector algorithm [26] to automatically detect the four cor-
ners of the plastic marker in the entire sequence of frames (visi-
ble + IR sequence). Second, we estimate an affine transformation
matrix that maps the movement between consecutive frames
(one matrix is estimated for each pair of frames). Third, we utilize
the inverse of each transformation to align the entire sequence of
images with respect to the first IR frame [27].

After registration, both the visible image and the entire infrared
sequence are spatially aligned, generating a three-dimensional
(3D) array of real numbers, that we denote by u € R"/*X, where I
and J represent the number of horizontal and vertical pixels,
respectively, in the spatial domain, and K represents the total num-
ber of frames (including the aligned visible image). We denote any
element of the cube u as u(i,j k), where 1 <i<I, 1<j<] and
1 <k <K. The first frame in the cube (i.e., k=1) corresponds to
the visible image, whereas the remaining frames correspond to
the IR sequence. The value of u(i,j,k) > 2 is referred to as the tem-
perature of the kth frame at the spatial location (i,j). For a fixed
spatial location (ij), the (K — 1)-dimensional vector u(i,j)=
[u(i,j,2),...,u(i,j,K)] is termed as the (i,j) thermal recovery data.

2.3.2. Lesion selection

Given that the purpose of this paper is to compare the thermal
recovery with respect to the surrounding skin (which is assumed to
be healthy), we require knowing the outer boundary of the suspi-
cious lesion, i.e., the pigmented area. For the purpose of this study
we perform the lesion selection by displaying u(i,j, 1) (i.e., the spa-
tially aligned visible image) to the user in order to ask him/her to
draw the boundary of the suspicious lesion using Matlab’s
imellipse function.

For this discussion, let us refer to Fig. 1. Define U as the set of all
the spatial locations within the opening of the marker, i.e.,
U= {(l.]) imin < i < imaxv jmin <] g]'max}v where iminv imaXv jmim jmax
defines the biggest quadrilateral that can be drawn within the
opening of the marker (red rectangle in Fig. 1); for this example
the point (imin, jmin) iS the upper-left corner of the quadrilateral,
the point (imin, jmax) defines the upper-right corner, and so on. Let
L be the set of all spatial locations that define the suspicious lesion
(selected by the user, as shown by the blue ellipse in Fig. 1). The set
N =L‘nU represents all of the spatial locations outside the lesion
but within the quadrilateral of interest. The collections U, L and
N will be utilized in the following section right after the non-uni-
form distribution of the initial temperature is addressed by a pixel
wise modeling of the thermal recovery.

2.4. Data analysis

2.4.1. Non-uniform cooling compensation

If two pieces of material with the same thermal parameters
(e.g., thermal diffusivity, specific heat, etc.) are cooled to two dif-
ferent temperatures they will have different recovery curves. This
can be observed by evaluating the heat equation [29]. Therefore,
to correctly compare the recovery of L and N sets, a uniform initial
temperature must be ensured. However, due to the heterogeneous
nature of skin tissue, this is difficult to implement via hardware.
Thus, this issue is addressed via software by judiciously selecting
(for the analysis) only those pixels with the same initial tempera-
ture, which is key contribution of the presented work.

Ideally, when no noise is present, one should simply analyze the
first frame in the IR sequence to determine which pixels can be
selected under a certain pre-specified rule in order to have only

pixels with the same temperature. Nonetheless, in the presence
of noise, the first frame does not necessarily contain the real initial
temperature. Thus, we modeled the thermal recovery of each pixel
as a dual exponential function in time whose parameters are
obtained by a non-linear least-square fitting of the thermal recov-
ery data. Fig. 2 shows two example pixels for one patient and its
corresponding model. Now for any collection of locations U, we
denote the modeled thermal recovery of all these locations by
fu(t). Therefore, the initial temperature in the entire rectangle of
interest, f;(0), will be given by the sum of the model coefficients,
i.e, if the model is denoted by f(t) = o+ B,e”t + pe”2!, then
fu(0) = {(6; + Brij + Baj) : (i,j) € U}. In the same way, we define
the initial temperature of the pixel inside and outside the lesion,
f1(0) and f\(0), respectively. To select the pixels with the same
initial temperature, we define the reference temperature as the
mean initial temperature across the pixels within the lesion, i.e.,
Trer=E[f1(0)], where E is the mathematical expectation computed
over all spatial locations in the set L. Next, we search for all pixels
in U that are close to T, within a certain tolerance. By trial-
and-error we determine that a range of 2% of T achieved a con-
sistent selection of pixels among patients. As such, we define the
collection of locations, S={(i,j) : If;;(0) — Trs| < pTy}, Where
p=0.02 in our case. Now, we can define the collections L' =L NS
and N'=NnS, which contain locations inside and outside the
lesion, respectively, and also have the same initial temperature
(within the p% tolerance). If for some patient the set N is null,
the value of p must be increased.

2.4.2. Quantification of lesion malignancy

Let us denote by u;-(t) and uy-(t) the collections of all the ther-
mal recoveries from the registered data, u, such that its spatial
locations are in the sets L" and N', respectively. More precisely,
() ={u(i, j, k): (i, j) € L', 2 <k <K} and uy-(t) = {u(i, j, k): (i, j)
eN,2<k<K).

As it was proposed and quantified before [24,25], the malignant
tissue when compared with benign tissue should present different
thermal parameters such as thermal diffusion, tissue specific heat,
and metabolic heat generation. Now, if there is any difference in
the thermal recovery of the pixels in L” with respect to the recovery
of the pixels in N, then it is primarily due to the difference in the
thermal parameters of each collection, owing that all the pixels
whose locations are in S have the same initial temperature.
Therefore, the sub-selection of pixels ensures that, if there is any
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Fig. 2. Dual exponential model fitting approach followed in this work to minimize
the influence of noise when compensating for the non-uniform initial temperature
distribution. Two representative thermal recoveries are used (u(1,1) and
u(100,100), specifically) to show the model fitting.
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difference in the thermal recoveries in u;- (t) and uy-(t), then they
are solely related to the malignancy of the suspicious lesion.

We hypothesized then that the suspicious lesion should be
declared as malignant if its average thermal recovery computed
across the locations L', i.e., E[u;-(t)], differs from the average ther-
mal recovery of the outside tissue computed across the locations
N', ie., E[uy (t)]. One way to quantify such a difference is by means
of the norm of the difference E[u;- (t)] — E[uy: (t)], normalized by the
total number of frames of the IR sequence in order to compensate
for small differences in the acquisition time between patients. The
mathematical expression for such a quantification approach for a
patient is as follows:

d — [Em: (0] — Efun- (O]l
K—-1

where E stands for the mathematical expectation and K is the third
dimension in the dataset u, while ||-|| represents the Euclidean norm
of the argument. The farther apart the curves are, the bigger the
parameter d and the more likely that the lesion is malignant. We
declare the lesion of the patient | as malignant if d, > 7, where 7 is
a specified threshold.

3. Results

A cohort study of 102 subjects was performed to investigate the
proposed approach. Fifty-eight percent of the subjects were male
and from the biopsy results, out of the 102 subjects 59 had benign
lesions, 29 had basal-cell carcinoma (BCC), 8 had squamous-cell
carcinoma (SCC) and 6 had malignant melanoma (MM).

3.1. Distribution of the quantification factor

The distribution of the d parameter for malignant (MM, SCC and
BCC) and benign lesions is depicted as a box-and-whisker plot in
Fig. 3. Here, the box represents the first and third quartile, the
red line is the median of the parameter and the blue dot is the sta-
tistical mean. The bars represent the 5% and 95% percentiles of the
parameter.

It can be seen in Fig. 3 that to classify the lesions with the d
parameter, the value of the threshold should be placed between
0.22 and 0.3 because within that range the 25% percentile of the
parameter value for malignant lesions is separated from the 75%
percentile of the parameter for benign lesions. Next, we discuss
our approach to select the value of the threshold, .

06

Norm Value

0.4r

031
0.22 e

Malignant (n=43) Benign (n=59)

Fig. 3. Distribution of the quantification factor, d, for the cohort sample used in this
study. It can be noted that the 25% and 75% percentiles of the benign cases (59
subjects) and malignant cases (43 subjects), respectively, are sufficiently apart to
permit good classification results.

3.2. Optimal classifier operation

For our purpose, the value of the threshold, 1, is selected such
that the sensitivity (also known as detection probability) and spec-
ificity (also known as the complement of the false alarm probabil-
ity) are jointly maximized.

In order to characterize the relationship between the threshold
and the sensitivity and specificity of the algorithm, quantities that
define the performance of the algorithm, the empirical receiver-
operating characteristic (ROC) curve of the algorithm must be
obtained [30]. This is made by continuously changing T within
the range [min,(d;), max/(d,;)] and computing the empirical sensitiv-
ity and specificity for each value of 7. The plot of the sensitivity vs.
the false alarm rate (defined as 1 - specificity) as the threshold is
changed generates the empirical ROC curve, which for our study
is shown in Fig. 4.

This curve summarizes the actual performance achieved by the
algorithm for different values of the threshold value. For example if
one requires the algorithm to detect all of the malignant lesions
with indifference to the detection of the benign lesions, then one
selects the point where the sensitivity is 100%, for which the spec-
ificity is about 50%. If, for example, one requires detection of only
the benign lesions, then the selected point (0% false alarm rate)
achieves almost 40% of sensitivity. Therefore, in Fig. 4 the reader
can easily see how well (or bad) this algorithm will perform for this
particular application.

To reiterate, we require the algorithm to jointly maximize the
sensitivity and the specificity. The green circle represents such a
maximum, which is achieved for the threshold value 7 =0.238.
For such a threshold value, the achieved sensitivity is 95.35% with
a 95% confidence interval (CI) of [88.17% 100%]; this implies that
under the assumption that this study is representative of the nat-
ural occurrences of cancerous lesions, one can correctly classify
more than 95% of the malignant cases. The achieved specificity is
83.05% with a 95% CI of [73.01% 91.87%], implying that under the
same condition, more than 83% of the benign lesions will be cor-
rectly discharged from the clinic, without requiring a biopsy.

The area under the curve (AUC) computes the area under the
ROC curve to measure how close the algorithm under test departs
from the perfect classifier (a perfect classifier has an AUC of 100%)
[30]; for our clinical study the achieved AUC is 95.03% with a 95%
CI [90.31% 99.76%].
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Fig. 4. Empirical receiver operating characteristic (ROC) curve obtained for the
cohort sample used in this study (solid red line) and the random guess result (blue
dashed line). The maximum sensitivity and specificity as well as the area under the
curve (AUC) are given as insets. The 95% confidence intervals for all the
performance metrics are given in squared parenthesis. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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4. Discussion

To the best of our knowledge, this is the first study of DTI that
comprises a large amount of patient data (>100 lesions) and yields
excellent performance in the classification of malignant lesions,
achieving an AUC of 95%. Even though further development and
clinical validation are necessary, the results are promising and
suggest that the DTI approach working jointly with the proposed
analysis algorithm has the potential to provide a fast, accurate,
non-contact, and non-invasive way to screen for common types
of skin cancer. As such, it has the potential to significantly reduce
the number of biopsies performed on suspicious lesions due to
its high specificity while its high sensitivity ensures that cancerous
lesions are biopsied.

The principal strength of our study was the introduction of a
standard methodology for the subject data analysis. The classifica-
tion algorithm only requires the selection of the lesion area on the
visible image, which is a common requirement for diagnostic tools.
We are aware that our study may represent an upper bound of the
actual performance of DTI for skin cancer detection and, therefore,
more data is required to either validate or reject our approach.
Moreover, the quality of the data depends on the subject’s ability
to maintain a steady and comfortable position for two minutes.
This makes the lesions in the head region difficult to image and
analyze. In addition, the presence of hair (a natural thermal diffu-
sor) adversely affects the data processing and analysis.

Although we defined the d parameter that directly accounts for
differences in the thermal recovery and indirectly accounts for
imperfections in the cooling of the skin, we are not certain of the
reasons that lead such a parameter to perform as a good classifier.
Other groups have performed extensive surveys [31] that may
explain that such a difference is due to thermal diffusion, blood
perfusion or even the different metabolic heat generated by the
cancerous cells. We have started studies to understand the physi-
ology of the lesion.

5. Conclusions

We performed a cross-sectional study of 102 subjects using DTI
to classify the malignancy of lesions. To the best of our knowledge,
this is the first time that a fast and non-invasive screening
approach based on DTI achieves these levels of performance.

The obtained results demonstrate that DTI with a properly stan-
dardized methodology is a promising tool for detecting skin cancer.
Moreover, it seems that the selection of pixels from normal skin
and the suspect lesion with the same initial temperature is the
key enabling-step for the utilization of DTI for skin cancer
detection.
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