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Abstract—Two model-based algorithms for edge detection in
spectral imagery are developed that specifically target capturing
intrinsic features such as isoluminant edges that are characterized
by a jump in color but not in intensity. Given prior knowledge
of the classes of reflectance or emittance spectra associated
with candidate objects in a scene, a small set of spectral-band
ratios, which most profoundly identify the edge between each
pair of materials, are selected to define a edge signature. The
bands that form the edge signature are fed into a spatial mask,
producing a sparse joint spatio-spectral nonlinear operator. The
first algorithm achieves edge detection for every material pair
by matching the response of the operator at every pixel with the
edge signature for the pair of materials. The second algorithm
is a classifier-enhanced extension of the first algorithm that
adaptively accentuates distinctive features before applying the
spatio-spectral operator. Both algorithms are extensively verified
using spectral imagery from the Airborne Hyperspectral Imager
and from a dots-in-a-well mid-infrared imager. In both cases
the multicolor gradient (MCG) and the Hyperspectral/Spatial
Detection of Edges (HySPADE) edge detectors are used as a
benchmark for comparison. The results demonstrate that the
proposed algorithms outperform the MCG and HySPADE edge
detectors in accuracy, especially when isoluminant edges are
present. By requiring only a few bands as input to the spatio-
spectral operator, the algorithms enable significant levels of data
compression in band selection. In the presented examples, the
required operations per pixel are reduced by a factor of 71 with
respect to those required by the MCG edge detector.

Index Terms—Edge detection, isoluminant edge, classification,
multicolor edge detection, spatio-spectral mask, spectral ratios.
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I. INTRODUCTION

Image segmentation and edge detection for multispectral
(MS) and hyperspectral (HS) images can be an inherently
difficult problem since gray-scale images associated with
individual spectral bands may reveal different edges. Segmen-
tation algorithms for gray-scale images utilize basic properties
of intensity values such as discontinuity and similarity [1].
Popular gray-scale edge detectors include Canny [2], Sobel
[3], and Prewitt [1], to name just a few. The transition from
a gray-scale to a multicolor image complicates edge detection
significantly: the standard definition of a gray-scale edge as a
“ramp” or “ridge” between two regions [1, p.573] is no longer
appropriate because a multicolor image has multiple image
planes (channels) corresponding to different spectral bands.
Moreover, depending on the composition of the scene, two
distinct spectral (color) regions may exhibit the same intensity
for one or more bands and, in this case, the edge between
the two regions is termed isoluminant. An isoluminant edge
is therefore characterized by a jump in color rather than a
jump in intensity. As a result, isoluminant edges cannot be
detected easily by a standard gradient-based operator because
they usually do not exhibit an intensity ramp that can be
estimated by the magnitude of such an operator [4]. (Examples
of isoluminant edges will be shown in Section III-B.)

The extension of gray-scale edge detection to multicolor
images has followed three principal paths [5]. A straightfor-
ward approach is to apply differential operators, such as the
gradient, separately to each image plane and then consolidate
the information to obtain edge information [6]. Sapiro [7],
Sandberg and Chan [8] identified several key drawbacks of
such a straightforward approach. First, edges can be defined by
combinations of different image planes and these edges may
be missing in some of the image planes. Second, processing
image planes separately disregards potential correlation across
image planes. Third, integration of information from separate
image planes is not trivial and is often done in an ad hoc
manner. Moreover, in cases when an edge appears only in a
subset of image planes, there are no standard ways to fuse
the information from different planes. In recent years, new
gray-scale algorithms were presented in the community (see,
for example, [9], [10], [11], [12]) but they all suffer from the
scalability problem when applied to multicolor images.

A second approach for multicolor edge detection is to
embed the variations of all color channels in a single measure,
which is then used to obtain the edge maps [5]. Typically,
this approach is developed by starting from a given gray-scale
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operator, which is then consistently extended to multicolor
images. Two representative examples of this approach are the
multicolor gradient (MCG), proposed by Di Zenzo [13], and
the morphological color gradient (MoCG) of Evans and Liu
[14]. The MCG operator represents a consistent extension of
the standard gradient operator to multicolor images and it
measures the local steepness of the multicolor image con-
sidered as a manifold embedded in the Euclidean space. (A
hyper-pixel belongs to a multicolor edge if the local steepness
of the manifold, as measured by MCG, exceeds a given
threshold [13].) Similarly, the MoCG operator is a consistent
extension of the morphological gray-scale gradient operator to
multicolor images [14], [15]. Such an operator is defined as
the difference of the dilation and the erosion operators applied
to a given structuring element [16]. Because the MCG and
the MoCG edge detectors simultaneously utilize spatial and
spectral information, they are examples of joint spatio-spectral
image-processing algorithms. The MCG algorithm and its
related algorithms have been used with great success in digital
image processing [7], [17], [18]; however, as shown by the
complexity estimates in Section IV, for spectral images with
a large number of bands, the number of operations required
by the MCG algorithm can be prohibitively high.

Another approach that falls into the category of joint spatio-
spectral algorithms is the order-statistics approach [19] and its
extensions presented by Toivanen et al. [20] and Jordan and
Angelopoulou [21]. In general, these algorithms consider the
data as a discrete vector field and they utilize an R-ordering
method to define a color edge detector using the magnitudes of
linear combinations of the sorted vectors. Another algorithm,
presented by Yu et al. [22], performs a mapping of the color
image into a feature space, which considers features such as
the local contrast, the edge connectivity, the color contrast
similarity and the orientation consistence. These features are
merged together to create a single feature that is compared to
a threshold to generate the final edge map. Similar approaches
can be found in [23], [24] and more sophisticated estimators
of the color gradient can be found in [25].

A third approach for multicolor edge detection is to aim the
algorithm to detect solely the changes between the materials
present in the imaged scene. For example, the HySPADE (Hy-
perspectral/Spatial Detection of Edges) algorithm transforms
the data cube into a spectral angle (SA) cube by calculating
the SA between each hyperpixel in the cube with every other
pixel [26]. As a result, the third dimension in the original
cube is replaced by the SA results, where jumps in the SA
represent changes in the materials. The positions of these
jumps are mapped back in to the original data cube, and
the final edge map is derived upon statistical accumulation of
edge information contained in every SA-cube. One important
distinction between the MCG algorithm and the HySPADE
algorithm is that the former utilizes both spectral and spatial
information to detect the edges, while the HySPADE utilizes
solely spectral information to unveil the boundaries of the
material composition.

In this paper, we propose two novel joint spatio-spectral
algorithms based on the concept of spectral-bands ratios.
By judiciously selecting the few and most relevant spectral

bands to maximize the contrast between pairs of materials, we
define a small set of ratios of spectral-band features that most
profoundly identify edges between each pair of materials. In
order to obtain the collection of relevant bands and the corre-
sponding ratios, a collection that we term the edge signature,
we utilize prior knowledge of the spectral characteristics of the
materials in the scene, obtained, for example, from a library
of spectral data. Through this stage, the proposed algorithms
achieve substantial levels of data compression as compared
with the MCG or HySPADE algorithms. In conjunction with
a spatial mask, the few spectral bands from the edge signature
give rise to a multispectral operator that can be viewed as
a sparse, three-dimensional (3D) mask, which is at the heart
of the two proposed edge-detection algorithms. The 3D mask
does not operate on a single image plane but instead it fuses
spectral information from multiple image planes with spatial
information. The first algorithm, termed the Spectral Ratio
Contrast (SRC) edge detection algorithm, defines the edge map
of a spectral image by matching the output of the 3D mask
with the ratios from the edge signature. The second algorithm
is an extension of the SRC algorithm and utilizes spectral
classification to further enhance the detection of edges that
are solely due to material (not intensity) changes. We term
this extension the Adaptive Spectral Ratio Contrast (ASRC)
edge detection algorithm since it adaptively changes the SRC
algorithm sensitivity to edges (at each pixel) by considering
the material-classification results of the neighboring pixels.
The first algorithm detects edges that arise from both intensity
and spectral changes while the second algorithm detects edges
based on spectral changes only.

The sparse spatio-spectral mask used in the SRC and the
ASRC algorithms is an important mark of distinction from
the MCG-based edge detector and other multispectral edge-
detection algorithms. A second key distinctive mark of the
proposed two algorithms is that they are not derivative-based:
edge detection is effected by matching an edge signature rather
than by measuring the gradient’s magnitude. Moreover, the
application of spectral ratios to define multispectral operators
for edge detection is a novel and a previously unexplored re-
search direction. However, spectral ratios have been previously
used in many techniques for quantitative vegetation monitoring
[27], [28], [29], regional seismic discrimination [30], [31],
[32], [33] and deblurring of noisy multichannel images [34].

The paper is organized as follows. In Section II we present
the SRC and the ASRC algorithms. In Section III we present
results of applying the algorithm to real data from the Airborne
Hyperspectral Imager (AHI) [35] and a quantum dots-in-a-
well (DWELL) mid-infrared (IR) imager [36] and compare
the performance to those resulting from the Canny, MCG
and HySPADE edge detectors. In Section IV we present a
complexity analysis of the algorithms. Our conclusions are
presented in Section V.

II. SPECTRAL RATIO CONTRAST ALGORITHM FOR EDGE
DETECTION

An MS or HS image, also termed an image cube, is a
3D array of real numbers that we denote by u ∈ IRI×J×K ,
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where I and J represent the number of horizontal and vertical
pixels, respectively, in the spatial domain, and K represents the
number of spectral bands. We denote any element of the cube
u as uk(i, j), where 1 ≤ i ≤ I , 1 ≤ j ≤ J and 1 < k ≤ K.
The value of uk(i, j) is referred to as the intensity of the kth
band at spatial location (i, j). For a fixed spatial location (i, j),
the K-dimensional vector u(i, j) = (u1(i, j), . . . , uK(i, j)) is
termed a hyper-pixel. Meanwhile, for a fixed band index k,
the two-dimensional array uk(·, ·) defines the kth image plane
(color slice) of the spectral image.

The goal of this paper is to define an edge map,

F : IRI×J×K 7→ {0, 1}I×J ,

that assigns the value 1 to the pixel location (i, j) if u(i, j)
belongs to an edge, while assigning the value 0 otherwise.
In this paper we define an edge to be either a jump in the
broadband intensity (as in the conventional definition of an
edge for gray-scale images) or a change in the material that
exhibit color contrast but not necessarily luminance contrast
(as in isoluminant edges). The SRC algorithm is designed with
the objective of detecting both types of edges. To reduce the
detection of false edges triggered by noise, and to improve
the detection of isoluminant edges, the ASRC algorithm is
designed to detect edges that are purely due to changes in the
material.

For two types of materials A and B, we build the edge map
FAB in three stages: (i) model-based edge signature identifi-
cation, (ii) sparse spatio-spectral mask development, and (iii)
edge discrimination. The SRC and the ASRC algorithms share
the first two stages, but they differ in the third stage, where
the latter involves spectral classification before discriminate
the edges. For simplicity, we first describe both algorithms
assuming only two distinct materials A and B in scenes, and
later we describe the extensions to multiple materials.

A. Model-based edge signature identification

Given two distinct materials A and B in a scene that is
probed by a sensor, we seek those bands for A and B whose
ratios can best identify the spatial locations that correspond
to the boundary points between the two materials. Let EAB

denote the set of all spatial indices (in the cube resulting
from imaging the scene containing materials A and B) that
are boundary points between materials A and B, and let
a = (a1, . . . , aK) and b = (b1, . . . , bK) denote hyper-pixels
corresponding to materials A and B, respectively. For example,
the vector a can be obtained by taking the average of all hyper-
pixels as material A is probed by the sensor. We next define
the spectral ratio index between materials A and B as the
K ×K matrix

A/B ,


a1
b1

· · · a1
bK

...
. . .

...
aK
b1

· · · aK
bK

 . (1)

We define the signature of the edge between materials A and
B as a small collection of size R, where R� K, of elements

of (1) that can reliably identify, as described below, the edge’s
spatial indices, EAB. We denote the edge signature by

EAB = {(p1, q1, ρ1), . . . , (pR, qR, ρR)}, (2)

where pr and qr are the band indices associated with the ratios
ρr = apr

/bqr , r = 1, . . . , R. The integer R is the length of
the edge signature.

The selection of the triplets (pr, qr, ρr), r = 1, . . . , R, is
made as follows. First, we select S bands {i1, . . . , iS}, where
the materials A and B exhibit maximum separation, i.e.,

i1 = arg max
1≤i≤K

|ai − bi| ,

i2 = arg max
1≤i≤K,
i 6=i1

|ai − bi| ,

...
iS = arg max

1≤i≤K
i 6=i1,...,iS−1

|ai − bi| .

Clearly, in the case of HS imagery the search for the best
S bands will be in a larger space compared to the case of
MS imagery, but the same procedure is utilize in both types
of imagery. Hence, once the edge signature is obtained the
complexity associated with processing MS and HS imagery
are identical.

Next, we compute the spectral ratios using all possible band
combinations: ρpq = aip/biq , 1 ≤ p, q ≤ S . Without loss of
generality, we may assume that all ratios are less than or equal
to unity. (If ρpq > 1 for some p and q, we simply replace it by
its reciprocal.) Finally, we define EAB by selecting the R ratios
that exhibit the strongest spectral contrast between the classes.
To rank the ratios according to their spectral contrast, we note
that owing to the convention that ρpq ≤ 1, the ratios closest to
zero correspond to the strongest spectral contrast between any
two bands. Thus, we select the first pair of bands, {p1, q1}, as
the pair corresponding to the smallest ratio,

ρ1 = ρp1q1 = arg min
1≤p,q≤S

ρpq ,

the second pair of bands {p2, q2} as the pair corresponding to
the next smallest ratio,

ρ2 = ρp2q2 = arg min
1≤p,q≤S
p6=p1
q 6=q1

ρpq ,

and so on. We combine the ordered band indices and the
corresponding ranked ratios to define the R triplets in the edge
signature (2). Since all the ratios are less than or equal to unity,
it can be easily shown that the definition of the edge signature
is invariant under the change in the order of the materials A
and B.

B. Sparse spatio-spectral mask development

We denote a spatial mask, M, at a pixel (i, j) as a
list of pixel pairs surrounding the pixel of interest. More
precisely, M(i, j) is the union of M neighborhoods of
pixels, M(i, j) = ∪Mm=1 Nm(i, j), where each neighbor-
hood consists of two distinct pixels surrounding (i, j), i.e.,
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Nm(i, j) = {um−(i, j), um+(i, j)}. For example, one can
define a 3× 3 mask centered at the pixel (i, j) that excludes
the center pixel by taking the union of four neighborhoods,
N1 = {u1−(i, j), u1+(i, j)} = {u(i − 1, j), u(i + 1, j)},
N2 = {u2−(i, j), u2+(i, j)} = {u(i, j − 1), u(i, j + 1)}, etc.

Next, we define the operation of the joint spatio-spectral
mask at the (i, j)-th pixel by computing the ratios between
each of the M pixel pairs of the spatial mask M, at each
of the R band pairs given in the edge signature EAB . For
example, using the pair of hyper-pixels defined by N1 and
the pair of bands given by first triplet of the edge signature,
(p1, q1, ρ1), one can define the ratios u1−p1

(i, j)/u1+q1 (i, j) and
u1+p1

(i, j)/u1−q1 (i, j). Namely, the application of the spatio-
spectral mask to each location (i, j) results in a 2M×R matrix
of “features.” (Compare this to a gray-scale image when the
application of a spatial mask to a pixel results in a scalar.)
Now the application of the spatio-spectral mask to the entire
image cube defines the mapping

KAB : IRI×J×K 7→
(
IR2M×R)I×J , (3)

where the (i, j)th entry of KAB(u) will be a 2M ×R feature
matrix of spectral ratios given by

KAB(u)(i, j) =



u1−p1
(i, j)

u1+q1 (i, j)
· · ·

u1−pR
(i, j)

u1+qR (i, j)
...

. . .
...

uM−p1
(i, j)

uM+
q1 (i, j)

· · ·
uM−pR

(i, j)

uM+
qR (i, j)

u1+p1
(i, j)

u1−q1 (i, j)
· · ·

u1+pR
(i, j)

u1−qR (i, j)
...

. . .
...

uM+
p1

(i, j)

uM−q1 (i, j)
· · ·

uM+
pR

(i, j)

uM−qR (i, j)



. (4)

For convenience, we denote the entries of the matrix
KAB(u)(i, j) as

κAB(i, j;m−, r) = um−pr
(i, j)/um+

qr (i, j) ,

and
κAB(i, j;m+, r) = um+

pr
(i, j)/um−qr (i, j) .

The use of both κAB(i, j;m−, r) and κAB(i, j;m+, r) in
(4) is required to account for the two possible material
configurations at the mth hyper-pixel pair. Specifically, the
first ratio captures the case when the hyper-pixel um−(i, j) is,
for example, from material A and um+(i, j) is from material
B, whereas the second ratio is needed to account for the
possibility that um−(i, j) is from material B and um+(i, j) is
from material A. Therefore, the use of the two ratios removes
dependence on the direction of the transition between A and
B, and it is similar to the use of the magnitude in the gradient
operator to achieve its rotational invariance.

To illustrate the functionality of the joint spatio-spectral
mapping KAB, consider a simple example for which the spatial
mask is comprised of the simple neighborhoods N1 and N2

described earlier and an edge signature whose length is unity

Fig. 1. Representative joint spatio-spectral mask, KAB(u)(i, j), for the
neighborhoods N1 and N2 described in the text and edge signature EAB

of length 1 (M = 2 and R = 1). We utilize bold arrows to represent the first
two ratios and regular arrows to represent the last two ratios in the presented
example.

(M = 2 and R = 1). Note that in this example KAB(u)(i, j)
is a 4× 1 matrix given by

KAB(u)(i, j) =



u1−p1
(i, j)/u1+q1 (i, j)

u2−p1
(i, j)/u2+q1 (i, j)

u1+p1
(i, j)/u1−q1 (i, j)

u2+p1
(i, j)/u2−q1 (i, j)

 . (5)

A visual illustration of the computation of the rows elements
in this matrix is shown in Fig. 1. This figure shows that,
unlike a conventional mask, KAB(u) does not operate on a
single image plane of the image cube but instead it fuses
information from different planes in a nonlinear fashion. Note
that the spatio-spectral mask is generally non-separable, i.e., it
cannot be written as the product of an operator acting solely in
the spatial domain and another operator acting in the spectral
domain.

Next, we develop the edge discrimination stage for the SRC
algorithm. Later, the same stage is modified to generate the
ASRC algorithm.

C. Edge identification

The third stage of the SRC algorithm is the utilization of
the sparse spatio-spectral mask, KAB, to identify the edges
between materials A and B. The proposed edge-identification
process is based on the following rationale. In the ideal
case when no noise is present and the image under test is
comprised only of hyper-pixels with the exact same value
of the characteristic hyper-pixels a and b, the output of the
spatio-spectral mask will perfectly match the values of the
ratios obtained from the edge signature. To illustrate this point,
assume the same example given earlier, where the spatio-
spectral mask is given by (5). When we have a horizontal
edge, the second and fourth ratios will have a value that is
not meaningful, but the first or third ratio will match the ratio
from the edge signature, ρp1q1 = ap1

/bq1 . Indeed, if the upper
pixel is from material A and the lower pixel is from material
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B, then the first entry of (5) will be u1−p1
(i, j)/u1+q1 (i, j) =

ap1/bq1 (which matches ρp1q1 ) and the third entry will be
u1+p1

(i, j)/u1−q1 (i, j) = bp1/aq1 . Conversely, when the upper
pixel is from material B and the lower pixel is from material
A, the computed ratios are switched, which means that the
third entry of (5) will match ρp1q1 . This example shows that
if an edge is present then at least one row of KAB(u)(i, j)
will perfectly match the ratios from the edge signature.

When noise is present, we allow a matching tolerance to
account for the similarity between the outcome of the mask
and the edge signature ratios. This can be accomplished by
defining the mapping

∆ :
(
IR2M×R)I×J 7→ (

{0, 1}M×R
)I×J

,

where the (i, j)th entry of KAB(u) is used to form the M×R
binary indicator matrix

∆
(
KAB(u)

)
(i, j) =


δ11(i, j) · · · δ1R(i, j)

δ21(i, j) · · · δ2R(i, j)

...
. . .

...

δM1 (i, j) · · · δMR (i, j)

 (6)

and the entries δmr (i, j) are assigned the values of 0 or 1
according to the rule

δmr (i, j) =


1, if |κAB(i, j;m−, r)− ρr| < ε ,

1, if |κAB(i, j;m+, r)− ρr| < ε ,

0, otherwise .

(7)

Here, the tolerance parameter, ε, accounts for both the natural
variability and the presence of noise in the spectral data for
materials A and B.

Ideally, if the mth hyper-pixel pair belongs to the same
material type, then the test in (7) will return the value of
zero. Conversely, if the hyper-pixels forming the pair are from
the two different materials, either the entry κAB(i, j;m−, r)
or κAB(i, j;m+, r) will be equal to the corresponding ratio
ρr from the edge signature EAB. As a result, the above test
will return the value 1 for the elements δmr in the mth row
of (6). As such, for a given pair of pixels, the number of
non-zero elements in the associated mth row of the indicator
matrix reveals the number of times the response of the mask
KAB(u)(i, j) has matched (within the specified tolerance ε)
the spectral ratios from the edge signature EAB.

Because the pixel pairs used to form the rows of the
mask correspond to different edge orientations (horizontal,
vertical or diagonal), the number of ones in each row of (6)
indicates the strength of the edge at position (i, j) for that
particular direction. One way to account for such strength is
by computing the matrix infinity norm of (6). Specifically, we
define the mapping

Φ :
(
{0, 1}M×R

)I×J 7→ {0, 1}I×J ,

which converts the indicator matrix (6) into an edge map by

Φ
(

∆
(
KAB(u)

))
(i, j) =

{
1, if ‖∆

(
KAB(u)

)
(i, j)‖∞ ≥ R̃

0, otherwise ,
(8)

where for any matrix A, ‖A‖∞ = max1≤i≤M
∑R

j=1 |aij |,
and R̃ ≤ R is a specified threshold. With the definition in (8),
the (i, j) location will belong to the collection EAB of edges
if the edge strength in at least one direction, as measured by
the number of ones in the rows of (6), exceeds the threshold
R̃. If none of the edge strengths exceeds R̃, then the (i, j) site
does not belong to EAB. The value of the threshold R̃ can be
used to adjust the sensitivity of the edge detector to noise. For
example, increasing R̃ makes the algorithm less sensitive to
noise but more restrictive.

Finally, we define the edge map as the composition

FAB = Φ ◦∆ ◦ KAB .

Note that KAB is the only problem-specific component in
FAB; the functions ∆ and Φ are not problem specific. Because
the edge signatures are determined independently for each
pair of materials and the information from different color
slices is properly fused, the SRC algorithm is particularly
well-suited for scenes that contain both weak edges (e.g.,
isoluminant edges) and strong edges. In contrast, an MCG-
based edge detector would require, for the detection of weak
edges, reducing the threshold at the expense of producing false
edges, as discussed in Section III.

In the next subsection we present an extension of the edge
identification stage of the SRC algorithm to benefit from
locally-adaptive thresholding based on material classification.

D. Classifier-enhanced edge discrimination

As shown in Section III, the SRC algorithm is capable of
detecting edges that are due to intensity changes and edges that
are due to spectral changes. In this subsection, we develop the
ASRC algorithm, which is restricted to capturing edges that
are due solely to material changes (and not intensity changes).
By specializing the algorithm to material changes, we increase
its tolerance to noise and the corresponding false edges are
minimized.

In order to capture solely the changes between materials
in the ASRC algorithm, we utilize material classification
of neighboring pixels to adaptively pre-qualify the spectral
ratios before computing the indicator matrix (6). The use of
classification to enhance other tasks such as segmentation is
an area that has already been studied [37], [38]. For exam-
ple, Loog and Ginneken [37] utilized a k-nearest neighbor
classifier to generate an initial segmentation of ribs in chest
radiographs, which is iteratively updated using other features
such as spatial distribution of the pixels by means of different
classifiers. Here, we fuse classification into the SRC algorithm
to minimize the effect of the misidentified pixels from the
former algorithm and improve the edge identification stage of
the latter.

Let us consider the feature matrix of the (i, j)th location,
KAB(u)(i, j), as given in (4). We want to rank the entries
κAB(i, j;m∓, r) of the feature matrix with the following two
objectives in mind: (i) promoting the thresholding of ratios
(as edge candidates) when the spatio-spectral mask contains
hyper-pixels from two distinct materials and (ii) discouraging
the thresholding of ratios when the mask contains hyper-pixels
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from only one type of material. To do so, we embed the data-
dependent multiplicative factors γi,jm,r with the tolerance ε in
(7), which results in its redefinition as

δmr (i, j) =


1, if |κAB(i, j;m−, r)− ρr| < γi,jm,rε ,

1, if |κAB(i, j;m+, r)− ρr| < γi,jm,rε ,

0, otherwise ,

where we use the same multiplicative factor, γi,jm,r, for both
tests in order to maintain the independence on the direction of
the transition between materials. The mathematical definition
of the multiplicative factors γi,jm,r is as follows. Let Nu(i, j),
Nl(i, j), Nr(i, j) and N`(i, j) denote four neighborhoods
surrounding the (i, j)th hyper-pixel of interest. The subscripts
u, l, r and ` stand for upper, lower, right and left neighbor-
hoods, respectively. The understanding is that Nu(i, j) con-
tains neighboring pixels above the hyper-pixel (i, j), N`(i, j)
contains neighboring pixels to the left of pixel (i, j), and so on.
We do not impose any restrictions on the four neighborhoods
at this point. Let the function C : IRS 7→ {0, 1} be a classifier
that maps each hyper-pixel to a class of materials, where
outputs 0 and 1 represent classes A and B, respectively. Now
for any collection of indices N , we denote the class of N
by C(N ), which is defined according to a certain prescribed
classification rule.

Next, define

γi,jm,r =
(
C(Nu)⊕ C(Nl)

)∨(
C(Nr)⊕ C(N`)

)
, (9)

where ⊕ denotes the “exclusive OR” operation and the symbol
“
∨

” represents the “OR” operation. For simplicity of the
notation, we have discarded the (i, j) dependence of each
neighborhood set N in (9) with the understanding that each
neighborhood is defined on a pixel-by-pixel basis.

From (9), γi,jm,r will be unity (in which case the (m, r)th
pixel-band pair at the (i, j) location qualifies for thresholding
as usual) if at least one of the opposite neighborhoods are
classified as two different materials. On the other hand, γi,jm,r

will be zero (in which case the (m, r)th pixel-band pair at
the (i, j) location does not qualify for thresholding) if the
declared class of each neighborhood is in agreement with the
declared class of its opposite neighborhood. As a consequence,
the ASRC will operate as the the SRC algorithm only if the
outcome of the classifier indicates the possible presence of an
edge, suppressing edges that are due to an intensity change.
This will also reduce the detection of false edges.

The fact that the ASRC algorithm is restricted to iden-
tifying edges based on color only is similar to that of the
HySPADE algorithm [26]; however, the algorithms are con-
ceptually different. A key difference between the ASRC and
the HySPADE algorithms is that the former utilizes the sparse,
3D mask of ratios to fuse spectral and spatial information to
nonlinearly extract edge information while the latter algorithm
utilizes only spectral information to compute spectral angles,
which are linear spatio-spectral features. Even though the
HySPADE algorithm performs equally well compared to the
SRC algorithm, its performance is worse than that of the
ASRC algorithm in the presence of isoluminant edges (see,
for example, Fig. 6). Moreover, as presented in the Section IV,

the HySPADE algorithm requires a high number of operations
per pixel (> 109 operations per pixel in our examples),
as compared with the operations required by the proposed
algorithms (< 90 operations per pixel in our examples).

E. Extension of the algorithms to multiple materials

We limit the description of the extension of the algorithm
to multiple materials to the case of three distinct materials A,
B and C. The extension to the general case is straightforward.
Due to the invariability of the detector for the order of the
materials, for three distinct materials A, B and C there are
three possible edges: EAB, EAC and EBC . In this case we
obtain three edge signatures, EAB, EAC and EBC , from which
we define three joint spatio-spectral masks KAB, KAC , and
KBC . We then use these masks to identify the hyper-pixels
belonging to the edge EAB between materials A and B, the
hyper-pixels from the edge EAC between materials A and C,
and the hyper-pixels from the edge EBC between materials
B and C. The final edge map is obtained by the union of the
three edges:

EABC = EAB ∪ EAC ∪ EBC .

III. EXPERIMENTAL RESULTS

In our study, we employ raw HS imagery from the AHI
sensor, and raw MS imagery from the DWELL sensor (more
details to follow). In order to create a more challenging
scenario for the algorithms, we normalize the data by their
broadband intensity [39]. The normalization minimizes the
role of broadband emissivity in the discrimination process and
emphasizes the spectral contrast.

For the AHI dataset, we only perform a qualitative com-
parison of the algorithms since the ground-truth information
is not available for this dataset. On the other hand, for the
data from the DWELL sensor we perform both qualitative
and quantitative assessment of the proposed algorithms and
the benchmark algorithms as the ground-truth information is
available.

We compare the outcome of our algorithms with the edge
maps obtained by the Canny algorithm [2] (applied to selected
bands), the MCG algorithm [13] and the HySPADE algo-
rithm [26]. We restrict our attention to edge signatures with
unity length using two bands (i.e., S = 2 and R = 1), which
is the minimum value required by the algorithms. Moreover,
we utilize a 3 × 3 spatial mask to construct the joint spatio-
spectral mask, KAB. Within the spatial mask, we identify
four directions (each one associated with a pair of pixels):
horizontal, vertical and the two diagonals, i.e., M = 4. For
the ASRC algorithm, we select the distance-based Euclidean
classifier for its simplicity and the good results observed; the
neighborhood sets Nu(i, j), Nl(i, j), Nr(i, j) and N`(i, j)
are defined within the same 3 × 3 spatial mask used in
the SRC algorithm. This choice of spatial mask, classifier
and neighborhood sets is also considered for the complexity
analysis in Section IV.
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TABLE I
THE EDGE SIGNATURES BETWEEN CLASSES B, G AND R OBTAINED FOR

THE AHI DATA

Signatures Triplets (p1, q1, ρ1)
Raw data Normalized data

EBG (17, 16, 0.6941) (3, 4, 0.8609)
ERG (47, 46, 0.7949) (3, 4, 0.8949)
EBR (17, 16, 0.8706) (16, 17, 0.9588)

A. Edge detection using AHI imagery

The AHI sensor consists of a long-wave IR (7µm-11.5µm)
pushbroom HS imager and a visible high-resolution CCD
linescan camera. The HS imager has a focal-plane array (FPA)
of 256×256 elements with spectral resolution of 0.1µm [35].
For this study, we utilize AHI data that contains three different
classes: building (B), ground (G) and road (R). We utilize
the 200 low-noise bands out of the 256 available bands. The
calculated edge signatures (band indices and the corresponding
responding ratios) for each pair of materials are summarized
in Table I.

Figure 2 shows a comparison among the edge maps ob-
tained by the Canny, the HySPADE, the MCG, the SRC
and the ASRC algorithms for the raw sensor data (first and
second columns) and for the normalized data (third and fourth
columns). The Canny algorithm is applied to the same depicted
image, which corresponds to the image plane at band 14.
Recall that the MCG and the SRC algorithms detect edges
characterized by both intensity and spectral changes. The
HySPADE and ASRC algorithms, on the other hand, detect
edges that exhibit a change in the spectral content only.

From the results presented in Fig. 2 we observe that the
Canny edge detector performs very well when applied to
the AHI raw image for spectral band 14 (row I, column
b). However, when the algorithm is applied to the intensity-
normalized image, the performance of the Canny algorithm
significantly degrades (row I, column d). This degradation is
a result of the fact that the Canny algorithm detects intensity
changes only, and it is expected to perform optimally for high
intensity contrast images such as the image in row I, column
a.

The MCG and the SRC algorithms produce virtually the
same edge maps when applied to raw sensor data (second row,
columns a and b), with a clear computational advantage seen
in the SRC algorithm by requiring only two spectral bands,
whereas the MCG algorithm requires all the 200 available
bands. When normalized data is used (second row, c and d
columns), few edges in some areas are missed either by the
SRC or the MCG algorithms. Nonetheless, the edge maps
between the two algorithms are again comparable. Moreover,
the results for the normalized case are very similar to those
for the raw data case. These results show the advantage of the
methods that utilize both intensity and spectral information
over purely gray-scale algorithms such as Canny.

The ASRC algorithm (row III, column b) performs signif-
icantly better compared to the HySPADE algorithm (row III,
column a) when applied to the AHI raw data. The edge map
obtained by HySPADE exhibits noise and some of the edges

(a) (b) (c) (d)

I
I
I

I
I
I

Fig. 2. Comparison between the SRC and ASRC edge detectors with the
edge signatures defined in Table I on the one hand, and the Canny, MCG and
HySPADE edge detectors on the other hand, for the raw sensor data (first
two columns) and the normalized sensor data (third and forth column) for the
AHI imagery. First row, from left to right: raw AHI data (band 14); Canny
edge map for raw AHI data at band 14; normalized AHI data at band 14;
Canny edge map for AHI normalized data at band 14; Second row from left
to right: MCG and SRC edge maps for AHI raw dataset; MCG and SRC edge
maps for AHI normalized dataset; Third row from left to right: HySPADE
and ASRC edge maps for AHI raw dataset; HySPADE and ASRC edge maps
for AHI normalized dataset.
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that were detected by SRC, MCG and ASRC are missed by
HySPADE. The advantage of ASRC over HySPADE continues
to be pronounced when both algorithms are applied to the
normalized data (row III, columns d and c). The edge maps ob-
tained by the ASRC algorithm applied to raw and normalized
data (row III, columns b and d) are virtually identical. This is
due to the fact that the ASRC algorithm detects edges based
on changes of the spectral content only. As for HySPADE,
the application of the algorithm to the normalized AHI data
results in a slight degradation of the edge detection but overall
reduction of the noise in the edge map compared to application
to the raw AHI data (row III, column a); however, as in the
case of ASRC, the edge maps are comparable. It is important
to note that the edge maps obtained by the MCG, the SRC
and the ASRC algorithms are very similar for both raw and
normalized AHI data cases.

One important conclusion can be drawn from the results
presented so far. By choosing only a few bands with maximum
spectral separation and by allowing unrestricted band combi-
nations to form the ratios, the SRC and ASRC algorithms (with
edge signatures that use the minimal possible length) perform
as well as the MCG algorithm and outperform the HySPADE
algorithm. This is an important result because it lends itself to
substantial data compression, compared to MCG, as well as
fast processing, as compared to HySPADE.

The SRC and ASRC algorithms offer a performance advan-
tage over the Canny, the MCG and the HySPADE algorithms
for images that contain isoluminant edges as seen next for the
DWELL imagery.

B. Edge detection using DWELL imagery

The DWELL sensor used in these experiments was designed
and fabricated at the Center for High Technology Materials at
the University of New Mexico [36], [39]. The DWELL pho-
todetector offers a unique property of spectral tunability that
is continuously controllable through the applied bias voltage.
This feature of the DWELL is a result of the quantum-confined
Stark effect [40]. In essence, a single DWELL photodetector
can be thought of as a continuously tunable MS spectral
detector, albeit with overlapping spectral bands [39].

In these experiments we utilize a 320×256 DWELL FPA to
image two different arrangements of rocks, as shown in Fig. 3
(first column). The first arrangement (top-left) is comprised of
granite (G) and limestone (L) rocks (approximately 1–2 inch
in diameter). The surrounding background (B) in this image
corresponds to the opening of a blackbody source. The second
arrangement (bottom-left) is comprised of the rocks phyllite
(P), granite (G) and limestone (L), surrounded by the same
background (B) as that in the first arrangement. Both examples
contain an invisible isoluminant edge between the granite and
the limestone rocks that exists on the tip of the black arrows.
The edge maps shown in Fig. 3 were obtained by using the
Sobel (second column) and the Canny (third column) edge
detectors applied to raw DWELL-sensor data when the FPA
is operated at 1.0V . The corresponding spectral response of
the sensor at the applied bias of 1.0V is shown in Fig. 4.
Note that the Sobel edge detector has entirely missed the

edge between granite and limestone rocks in both examples.
Moreover, it has also failed to detect strong edges between
both the granite-phyllite pair and the limestone-phyllite pair.
However, the more sophisticated Canny edge detector picks
up these strong edges, and it partially detects the isoluminant
edge in the first examples. Nevertheless, it does not detect the
isoluminant edge in the second example.

By operating the DWELL sensor at ten different bias volt-
ages, we generated a multispectral cube to test the proposed
algorithms. The obtained edge signature triplets for all the
possible combinations of material pairs for both datasets are
summarized in Table II. In what follows, we will term the
DWELL imagery that contains background, granite and lime-
stone classes, as shown in Fig. 3 (top-left), the first DWELL
dataset, and we term the imagery that contains background,
phyllite, granite and limestone, as shown in Fig. 3 (bottom-
left), the second DWELL dataset.

The results for the first DWELL dataset for raw sensor
data are shown in Fig. 5. The first row of edge maps shows
the results of the application of the Canny edge detector to
four randomly selected bands. It is important to note that
some bands present a high number of false edges, whereas
for other bands the isoluminant edges are detected. As such,
the Cabby algorithm can generate good edge maps, depending
on the bands used. The second and third rows show the
results for the MCG and HySPADE algorithms, respectively,
at different threshold values in order to unveil the isoluminant
edge between the granite and limestone rocks. The MCG
algorithm second row) picks up the weak edge only after its
tolerance is increased to a degree that results in the detection
of a significant number of false edges (second row, fourth
column). On the other hand, HySPADE offers a less-noisy
edge map compared to the MCG algorithm; nonetheless, the
background-granite and granite-limestone edges are not well
defined, as shown in the third row, fourth column. Moreover,
the high computational cost of the HySPADE algorithm makes
it hard for the user to fine tune its tolerances, which is a
clear disadvantage of the HySPADE algorithm. (More details
regarding computational costs are given in Section IV.) We

Datasets Sobel algorithm Canny algorithm

Fig. 3. Two datasets used in the current study: the first dataset is comprised
of B, G and L classes (top row) and the second dataset is comprised of
B, G, L and P classes (bottom row). First column: images acquired with the
DWELL FPA (with enhanced contrast to show details) operating at an applied
bias of 1.0V . The isoluminant edges (not visible) are marked by the tips of
the black arrows. Second column: edge map obtained by the Sobel gray-scale
edge detector; third column: edge map obtained by the Canny gray-scale edge
detector.
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Fig. 4. Spectral response of the DWELL photodetector at an applied bias of
1.0 V.

also observe that at the cost of a slight increase in the number
of false edges, the SRC algorithm can clearly define the
background-granite edge with respect to the granite-limestone
edge (fourth row, fourth column). Finally, the results of the
ASRC algorithm (fifth row, fourth column) are better than all
the previous algorithms in terms of clearly defining both the
strong and weak edges. The ASRC algorithm also discards all
of the false edges in the the background.

By utilizing the available ground-truth information for the
DWELL datasets, we derived reference edge maps for the
scenes under study. These edge maps are utilized to compute
the empirical detection and false-alarm probabilities, PD and
PF , respectively, for the five algorithms (Canny applied on
different bands, MCG, HySPADE, SRC and ASRC). The
detection probability (also known as the sensitivity of the
algorithm) corresponds to the probability that an actual edge
(provided by the ground truth) is detected by the algorithm
under evaluation. The false-alarm probability (also known as
the complement of the specificity of the algorithm) is the
probability that the algorithm detects a non-existing edge. For
each algorithm, we have tuned the respective parameters in
order to unveil the isoluminant edges (the assessment was
made by visual inspection). We have conditioned the algo-
rithms’ parameters to detect isoluminant edges because they
present one of the most challenging problems in multicolor
edge detection. The metrics PD and PF were computed
by comparing the ground-truth edge-map with the algorithm
outcome on a pixel-by-pixel basis.

From the results presented in Table III we see that the best
performance achieved by the Canny algorithm is when it is
applied to band 9 (PD = 0.4533 and PF = 0.0082). It is
important to note that the Canny algorithm, applied to this
band, is capable to partially detect the isoluminant edge (see

TABLE II
EDGE SIGNATURES AMONG THE B, P, G, AND L CLASSES OBTAINED FOR

THE DWELL DATASETS

Triplets (p1, q1, ρ1)
Signature Raw data Normalized data
EGB (6, 7, 0.2747) (1, 10, 0.1434)
ELB (6, 7, 0.2636) (1, 10, 0.1395)
ELG (5, 6, 0.7577) (9, 10, 0.9109)
EPL (4, 5, 0.5703) (9, 10, 0.8444)
EPB (6, 7, 0.3168) (1, 10, 0.2283)
EPG (4, 5, 0.6006) (9, 10, 0.8590)

Fig. 5. Comparison between the Canny algorithm applied to individual bands
(first row), MCG algorithm (second row), HySPADE algorithm (third row),
SRC algorithm (fourth row) and ASRC algorithm (fifth row) for the dataset
containing granite and limestone rocks (first dataset). The Canny algorithm
was applied to the images at bands 1, 6, 8 and 9, respectively. The MCG and
HySPADE results are presented for a sequence of increasingly permissive
tolerances in order to unveil the isoluminant edge. Last two rows show the
SRC and ASRC edge maps: first column, the edges EGB; second column,
the edges ELB; third column, the edges ELG; fourth column, the combined
edge maps.

Fig. 5, top-right). However, without previous knowledge of the
scene and the results of the application of the Canny algorithm
to every band, it would be difficult to guess which band gives
the best results. The MCG algorithm, on the other hand, cannot
detect the isoluminant edges without producing a high number
of false edges. Indeed, when the isoluminant edge is detected
(second row, fourth column) the MCG performance is given
by a high detection (PD = 0.9600) but also with a high false-
alarm probability (PF = 0.6112). At the cost of a tremendous
increase of computation complexity (see Section IV), the
HySPADE algorithm outperforms the Canny algorithm in
terms of sensitivity (PD = 0.7867) and the MCG algorithm
in terms of low false alarm probability (PF = 0.0565).
In contrast, the SRC algorithm outperforms the previous
algorithms in terms of both simplicity and sensitivity with
PD = 0.9467, at the cost of a slight increase in the false-alarm
probability (PF = 0.0862) in comparison to HySPADE. The
ASRC algorithm outperforms all the other four algorithm in
terms of highest detection and lowest false-alarm probability,
PD = 0.9733 and PF = 0.0244, respectively.

The edge-detection results for the second DWELL dataset
are presented in Fig. 6 for intensity-normalized data. Ta-
ble IV summarizes the detection and false-alarm probabil-
ities achieved by each one of the five algorithms for this
dataset. The second dataset is more challenging than the
first dataset because the two classes with the isoluminant
edge (i.e., granite and limestone rocks) are now positioned
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TABLE III
COMPARISON TABLE FOR THE PD AND PF RESULTS OF FIVE

ALGORITHMS (CANNY, MCG, HYSPADE, SRC AND ASRC) FOR THE
DATASET CONTAINING B, G AND L CLASSES (RAW DATA)

Algorithm Detection probability False alarm probability
Canny (band 9) 0.4533 0.0082
MCG 0.9600 0.6112
HySPADE 0.7867 0.0565
SRC 0.9467 0.0862
ASRC 0.9733 0.0244

Fig. 6. Comparison among the Canny algorithm applied to individual bands
(first row), MCG algorithm (second row), HySPADE algorithm (third row),
SRC (fourth row) and ASRC (fifth row) for the dataset containing Phyllite,
Granite and Limestone rocks (second dataset). The MCG and HySPADE
results are presented for a sequence of increasingly permissive tolerances in
order to unveil the isoluminant edge. Last two rows show the SRC and ASRC
edge maps: first column, the edges EPG; second column, the edges EPL;
third column, the edges ELG; fourth column, the combined edge maps.

against a phyllite backdrop that exhibits less contrast than
the blackbody. Moreover, the data is intensity normalized. As
before, the Canny edge detector achieves good performance
when applied to band 9 (PD = 0.7854 and PF = 0.0301).
It is very interesting to note that (for this band) the Canny
algorithm is capable detecting the isoluminant edge between
the granite and limestone rocks almost fully. This is because
the normalization process smooths some intensity peaks and
improves the contrast between granite and limestone (for this
particular band) as a secondary effect. This result proves that
the first category of algorithms (those that do not use spectral
information) can achieve good detection as long as the best
band is identified through pre-processing of the data, which
can be a very difficult requirement.

As for the MCG-generated edge maps, Fig. 6 (second row),
the weak edge is detected only when the false-alarm proba-
bility reaches unacceptable levels. The HySPADE algorithm
performs worst than the MCG algorithm (PD = 0.7445

and PF = 0.0833) and it is not capable of detecting the
isoluminant edge. In contrast, the SRC algorithm recovers the
strong edges as well as the weak edge between the granite
and limestone rocks. Indeed, Fig. 6 (fourth row) shows a
high-resolution weak edge captured by the SRC algorithm.
The achieved detection and false-alarm probabilities of the
SRC algorithm (PD = 0.8593 and PF = 0.0873) corroborate
this observation. It is important to note that event though
the SRC algorithm is able to detect isoluminant edges for
challenging scenarios, it still suffers from detecting false edges
for each pair of materials, as observed in both examples.
However, the ASRC algorithm reduces the detection of false
edges substantially (PF = 0.0652 for ASRC compared to
PF = 0.0873 for SRC), owing to the fusion of material
classification in the edge-detection process. The ASRC is
also able to improve the detection of edges, as noted by
the improved detection probability (PD = 0.8919 for ASRC
compared to PD = 0.8593 for SRC).

From these results, we can conclude that the SRC algorithm
outperforms the MCG and HySPADE algorithms for the task
of detecting edges using spectral data with minimal intensity
contrast. Moreover, it performs as good as the Canny edge
detector without the difficult requirement for pre-selecting the
optimal band. Moreover, at the cost of a slight increase in
computational cost, the ASRC algorithm outperforms all other
four algorithms presented in this paper.

Next, we compare the multicolor algorithms (SRC, ASRC,
MCG and HySPADE) in terms of their computational costs.

IV. COMPLEXITY ANALYSIS

In this section, we estimate the complexity of the feature ex-
traction stage in the SRC and ASRC algorithms and compare
it to those for the MCG and the HySPADE algorithms. Since
the edge signature identification is made offline and before the
edge-identification stage, we do not include its computational
cost. For simplicity, in the cost estimates we will regard the
cost of all operations (e.g., multiplication, addition, etc.) as
equal.

The SRC operations per pixel include the 2MR ratios
required to form the matrix KAB(u)(i, j) in (4), plus the 4MR
computations required to form ∆

(
KAB(u)

)
(i, j) in (6), plus

the MR operations required to define the edges in (8). The
total number of operations for the SRC algorithm is 7MR
operations per pixel. The ASRC computations include those
from the SRC algorithm (7MR operations per pixel) plus
those required to compute and utilize the parameters γi,jm,r. To

TABLE IV
COMPARISON TABLE FOR THE RESULTS OF FIVE ALGORITHMS (CANNY,

MCG, HYSPADE, SRC AND ASRC) FOR THE DATASET CONTAINING B,
P, G AND L CLASSES (NORMALIZED DATA)

Algorithm Detection probability False alarm probability
Canny (band 9) 0.7854 0.0301
MCG 0.8802 0.5046
HySPADE 0.7445 0.0833
SRC 0.8593 0.0873
ASRC 0.8919 0.0652
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TABLE V
COMPARISON TABLE FOR THE TOTAL NUMBER OF OPERATIONS REQUIRED

FOR THE SRC, ASRC, MCG AND HYSPADE ALGORITHMS

Total number of operations per pixel
Examples (M = 4 and R = 1)
AHI data DWELL data

Algorithm General expression (K = 200) (K = 10)
SRC 7MR 28 28

ASRC 2M + 6R+ 18MR 86 86
MCG 10K + 9 2,009 109

HySPADE IJ(3IJ + 6K + 3) > 109 > 1010

calculate these parameters, we first require the classification
and label comparison of the pixels within the mask, a task that
will cost 2M+6R operations per pixel. Next, the computation
of the γi,jm,r parameter requires 11MR operations per pixel
(two XOR operations and one OR operation for each entry in
(6)). The total number of operations for the ASRC algorithm
is therefore 2M + 6R+ 18MR operations per pixel.

Meanwhile, the MCG algorithm requires 10K−3 operations
to compute the first fundamental form for each hyper-pixel,
nine operations to compute the corresponding eigenvalues, and
three operations to compute the monitor function and apply
the threshold. The total number of operations for the MCG
algorithm is therefore 10K + 9 operations per pixel. Next,
for each hyper-pixel, the HySPADE algorithm requires the
computation of IJ spectral angles (each spectral angle costs
6K + 1 operations), plus the 2IJ + 1 operations per pixel
of the SA-cube to compute the one-dimensional derivative
approximation, plus the IJ +1 operations required to account
for the statistical accumulation of each pixel within the SA-
cube. The total number of operations for the HySPADE
algorithm is therefore IJ(3IJ+6K+3) operations per pixel.

In Table V we present a summary of the estimated values
for the four algorithms considering the same AHI and DWELL
experiments we previously discussed in Section III. The pro-
posed algorithms do not change their respective computational
costs for the two examples because the edge signature iden-
tification removes the dependency of the algorithms on the
actual number of bands of the data. From the presented table,
we can observe that the SRC algorithm gives a 71 fold gain
in computational efficiency over the MCG algorithm for the
two class edge detection problem over the AHI data, whereas
the ASRC algorithm gives a 23 fold gain.

V. CONCLUSIONS

We have introduced two model-based, spatio-spectral edge-
detection algorithms, termed the SRC and ASRC algorithms.
The SRC algorithm enables the detection of edges that are
due to either material change or intensity variation in scenes
containing a prescribed set of materials. The ASRC algorithm
is a specialized version of the SRC algorithm, aimed at
detecting edges that are due to a change in the material only.
The ASRC aims to reduce the detection of false edges due to
unwanted changes in the intensity.

Both algorithms utilize spectral library information to con-
struct a sparse, non-separable and 3D edge operator while
exploiting the concept of spectral ratio contrast. The reported

SRC edge detector performs as well as the MCG edge detector
for moderately challenging edges, with the advantage of
requiring less operations than that required by the MCG algo-
rithm (a reduction by a factor of 71 in our examples). However,
for challenging imagery containing isoluminant edges, the
SRC and ASRC edge detectors outperform the MCG and
HySPADE edge detectors by a wide margin, as quantified by
the detection and false-alarm probabilities. This provides a
strong validation of the efficacy of the spectral ratio contrast
concept by showing that the use of select band ratios can
lead to reliable identification of weak edges in the presence
of noise. Moreover, with a slight increase in the complexity
(3 folds in our examples), the ASRC algorithm, which also
involves classification-based step, is capable of minimizing
the false-alarm edges, outperforming the SRC, MCG and
HySPADE algorithms.

The dramatic reduction in the number of operations with re-
spect to other algorithms such as the MCG and the HySPADE
algorithms is a key advantage of the proposed algorithms. The
reduced number of operations is mainly due to the property
that only a few bands are required to perform edge detection.
In principle, this property can be exploited to reduce the
spectral-image acquisition time substantially by requiring the
sensing of only those bands that are most relevant to the set of
materials within the scene. In particular, this band-reduction
feature is particularly relevant to emerging spectral imaging
sensors that are bias tunable, such as the DWELL sensor,
where one can perform intelligent acquisition by programming
the sensor electronically to sense only at the few prescribed
bands.
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