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Abstract: While quantum dots-in-a-well (DWELL) infrared photodetectors 
have the feature that their spectral responses can be shifted continuously by 
varying the applied bias, the width of the spectral response at any applied 
bias is not sufficiently narrow for use in multispectral sensing without the 
aid of spectral filters. To achieve higher spectral resolutions without using 
physical spectral filters, algorithms have been developed for post-processing 
the DWELL’s bias-dependent photocurrents resulting from probing an 
object of interest repeatedly over a wide range of applied biases. At the 
heart of these algorithms is the ability to approximate an arbitrary spectral 
filter, which we desire the DWELL-algorithm combination to mimic, by 
forming a weighted superposition of the DWELL’s non-orthogonal spectral 
responses over a range of applied biases. However, these algorithms assume 
availability of abundant DWELL data over a large number of applied biases 
(>30), leading to large overall acquisition times in proportion with the 
number of biases. This paper reports a new multispectral sensing algorithm 
to substantially compress the number of necessary bias values subject to a 
prescribed performance level across multiple sensing applications. The 
algorithm identifies a minimal set of biases to be used in sensing only the 
relevant spectral information for remote-sensing applications of interest. 
Experimental results on target spectrometry and classification demonstrate a 
reduction in the number of required biases by a factor of 7 (e.g., from 30 to 
4). The tradeoff between performance and bias compression is thoroughly 
investigated. 
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1. Introduction 

Multispectral (MS) and hyperspectral (HS) infrared (IR) sensing continues to be a pivotal tool 
in remote sensing. The role of MS/HS sensing in a wide spectrum of applications has been 
increasing steadily with the advancement in sensor technology as well as data-processing and 
interpretation techniques. Conventionally, a MS sensing system is realized by integrating an 
IR broadband sensor with some sort of an “optical filter wheel,” where each filter admits a 
single IR spectral band. Current state-of-the-art IR detectors include the HgCdTe-based 
(MCT) photodetector due to its superior sensitivity (high detectivity and quantum efficiency). 
MCT detectors have also been integrated with arrays of diffractive optics at the detector level 
for MS sensing. Examples of such diffractive optics are lenslet arrays [1], micro-electro-
mechanical systems (MEMS) [2] and acousto-optic tunable filters (AOTFs) [3]. In recent 
years, many other detector technologies have emerged, some of which have been competing 
with the performance of HgCdTe detector. Such technologies are the micro-bolometer [4], 
quantum-well IR photodetectors (QWIPs) [5] and InAs quantum-dots IR photodetectors 
(QDIPs) [6], to name a few. As in QWIPs, QDIPs are also cryogenically cooled 
photodetectors; however, their operation principle is based on intersubband transitions in 
quantum dots, which can result in a lower dark current compared to QWIPs with good three-
dimensional confinement of the QDs and the increased carrier lifetime resulting from reduced 
scattering processes. 

One of the successful QDIP designs is the dots-in-a-well (DWELL) photodetector [7–9], 
in which quantum dots are embedded in a quantum well. The DWELL technology combines 
the advantages of QWIPs and QDIPs: they include operating-wavelength tailoring, normal 
incidence operation, increased lifetime and three-dimensional quantum confinement. 
Additionally, the DWELL photodetector offers a unique property of spectral tunability that is 
continuously controllable by the applied bias voltages. As a result of the quantum-confined 
Stark effect [10], a single DWELL photodetector can be thought of as a MS spectral detector, 
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albeit with overlapping spectral bands [11,12]. Figure 1 shows spectral responses of a recent 
DWELL detector developed by our group; this device is used later in this paper to 
demonstrate the proposed sensing algorithm. 

 

Fig. 1. Bias-tunable spectral bands of a DWELL photodetector for various applied bias 
voltages in the range −3 to 3 V. 

As seen from Fig. 1, the spectral bandwidth of the raw DWELL’s spectral response is too 
broad (i.e., over 2 µm) for many practical MS/HS applications that require finer spectral 
resolutions (object detection and identification, spectroscopy, etc.). To enhance the resolution 
of the DWELL beyond what is available at each fixed bias, we must exploit the continuous 
bias-dependent tunability property of the DWELL and explore novel multi-bias modes of 
sensing through post processing. In recent years, our group has reported post-processing 
algorithms that offer two functionalities beyond those offered by the single-bias mode of the 
DWELL. The underlying idea is to sense an object of interest repeatedly at multiple applied 
biases and then form a linear superposition of the bias-dependent photocurrents according to 
weights that are designed for specific MS sensing tasks. The first functionality, termed 
spectral tuning, allows performing algorithmic spectrometry [13–16], which has been 
demonstrated by our group and others in reconstructing the spectra of targets of interest 
without utilizing any physical optics or spectrometer. Specifically, for an arbitrarily specified 
narrowband tuning filter, the algorithmic spectral-tuning technique yields an optimal set of 
weights that can be used to add the bias-dependent spectral responses of the DWELL. The 
resulting superposition spectral response is the best approximation of the desired shape of the 
specified narrowband tuning filter. The bandwidth can be as narrow as 0.5 µm, which is one 
fourth of the full-wave-at-half-maximum (FWHM) spectral bandwidth of the DWELL’s 
spectral response. A reconstruction of a target’s spectrum at each wavelength is then obtained 
by forming a weighted linear superposition of bias-dependent photocurrents. Such 
“superposition photocurrent” represents the best approximation of the ideal photocurrent that 
would be obtained if we were to use a broadband detector to probe the same target of interest 
through a physical narrowband spectral filter. 

The second functionality, termed spectral matched-filtering [17], is too based upon the 
principle of forming a superposition. However, the objective there is to perform target 
classification [18] instead of spectral reconstruction. Specifically, for a given spectrum, 
representing a class of targets of interest, the spectral matched-filtering technique finds an 
optimal set of weights to be used to form a weighted superposition of the DWELL’s bias-
dependent spectral responses approximating the spectrum of interest. A matched-output for 
the target’s spectrum is obtained by forming a weighted linear superposition of the bias-
dependent photocurrents. The superposition photocurrent represents the best approximation of 
the ideal photocurrent that would be obtained if we were to use a broadband detector through 
a spectral filter that is matched to the target’s spectrum. Both algorithms take into account the 
bias-dependent signal-to-noise ratios of the DWELL’s photocurrents [13,17]. 
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The two functionalities described above were designed without restricting the number of 
bias-dependent photocurrents to be used in forming the superposition photocurrent. For 
practical implementation, it may be necessary to limit the number of data acquisitions (or 
equivalently, the number of applied biases used) due to hardware (memory and processors), 
cost and/or total acquisition-time constraints. The delay associated with acquiring such a high 
number of photocurrents sequentially is proportional to the number of biases, making the 
method inadequate for dynamic targets. It is therefore critical that we extend the sensing 
algorithms so that only a minimum number of biases are used. The ability to utilize a small 
number of biases can be exploited by a smart-pixel read-out circuitry in order to enable on-
chip implementation of the algorithm. 

In this paper we report a new multispectral sensing algorithm to substantially compress the 
number of necessary biases, and hence the amount of data to be sensed, subject to a prescribed 
performance level. In essence, the algorithm identifies a minimal set of biases to enable 
sensing only the relevant spectral information for remote-sensing applications of interest. The 
remainder of this paper is organized as follows. In Section 2 we review the basic concepts 
underlying our original algorithmic spectral sensing approach and identify the technical 
challenges associated with constraining the number of required biases. In Section 3 we 
describe the generalized, data-compressive spectral sensing algorithm. In Section 4 we 
perform the case study on optimal bias selection. In Section 5, we demonstrate experimentally 
the efficacy of our approach in the context of target spectrometry and classification. The 
conclusions are stated in Section 6. 

2. Review of algorithmic spectral sensing and moving on to reducing the sensed data 

In this section, we review germane aspects of our original algorithmic MS sensing approach 
drawing freely from our earlier work [13]. The DWELL’s spectral bands are denoted by the 
functions R1(λ),…,RK(λ), corresponding to the applied bias voltages v1,…,vK. Let us consider 
an arbitrary target of interest with unknown spectrum, p(λ), that is probed by the DWELL 
photodetector at the bias values v1,…,vK. The output of the DWELL photodetector is 
represented by a vector of bias-dependent photocurrents, I = [i1,…,iK]T; the mth photocurrent, 
im, corresponds to the mth bias vm. Mathematically, im is expressed by 

 ,)()(
max

min

mmm NdRpi += ∫
λ

λ

λλλ   (1) 

where Nm denotes bias-dependent noise associated with the mth band, and the interval [λmin, 
λmax] represents the available wavelength range for all bands and objects. The photocurrent 
vector represents the bias-driven multispectral data vector of the object as seen by the 
DWELL detector operated at the prescribed bias set. Note that since the spectral bands of the 
DWELL detector are relatively broad and highly overlapping the bias-dependent 
photocurrents can have a high level of redundancy. 

The spectral-tuning (ST) algorithm [13,14] uses the vector I to estimate the transmittance 
(or reflectance) spectrum of the unknown target. A brief description of the ST algorithm is 
given next. Firstly, the user specifies a series of hypothetical narrowband tuning filters, 
r(λ;λn), n = 1, …, L, that would be used to sample the target’s transmittance spectrum at 
wavelengths λ1….λL. Next, the ST algorithm generates a weight vector, wn = [w1,…,wK], for 
each tuning filter r(λ;λn). The weights are calculated so that when wn is linearly combined 
with the spectral responses R1,…,RK, the superposition spectral response will approximate the 
r(λ;λn). The vector of weights, wn, can be computed using a closed-form formula (Eq. (18) in 
[13]): 

 ( )
1

, ,T T T T

n nrα λ λ
−

   = + +   w A A Φ A Q QA A i   (2) 

where A is the matrix of DWELL’s spectral bands [R1(λ),…,RK(λ)]T, Q is the Laplacian 
operator used as a regularization matrix (typically a highpass filter) [13] and Φ is a signal-to-
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noise ratio matrix defined by the ratio between the averaged photocurrent and the standard 
deviation of the noise associated to the DWELL’s spectral band and α is a regularization 
parameter which controls the quality of the approximation. Each weight vector wn is then used 
to form a linear combination of the K bias-dependent photocurrents, namely wn

Ti, a 
“superposition photocurrent” that reconstructs the target’s transmittance captured by the 
spectral filter r(λ;λn). This process is repeated for every hypothetical tuning filter. We 
emphasize that the weights are calculated offline and their calculation does not involve any 
knowledge of the target’s spectrum. 

2.1 Challenges in reducing the number of required biases 

To reiterate, the reduction in the number of required biases is needed for two reasons: (1) to 
minimize the substantial redundancy in the bias-dependent photocurrents as a target is probed 
by the DWELL detector at the different biases and (2) to make the approach amenable to near 
real-time implementation by reducing the data-acquisition time. There are two challenges in 
reducing the number of require biases that this paper aims to surmount. Firstly, if we restrict 
the number of biases to a small value, there needs to be a viable algorithm for selecting the 
actual biases from an often-large number of available biases. The challenge here is that the 
complexity of a direct search approach is exponential due to the combinative nature of the 
problem. Secondly, even if the first challenge is overcome and we are able to generate a small 
set of biases for each one of the narrowband (hypothetical) tuning filters r(λ;λn), we may 
obtain a different set of reduced biases for each filter. Thus, an aggregated set of biases 
(obtained by taking the union of the small number of biases for each filter) that guarantees 
good performance for all the filters may no longer be small. 

(a) (b) (c)(a)(a) (b)(b) (c)(c)

 

Fig. 2. Example of three different narrowband tuning filter approximations centered at (a) 7.4 
µm, (b) 8.8 µm and (c) 10.2 µm, the algorithm requires 21 out of 30 biases. The biases used are 
{-3.0, −2.8, −2.6, −2.2, −2.0, −1.8, −1.6, −1.4, −1.2, −0.8, −0.6, −0.4, −0.2, 0.2, 0.4, 0.6, 0.8, 
1.4, 1.8, 2.4, 2.6}. 

To help appreciating the second challenge, consider the example were we are interested in 
approximating three spectral filters (n = 3) as shown in Fig. 2. Suppose that we have a total of 
30 DWELL spectral responses corresponding to the biases in the range −3 to 3 V in steps of 
0.2 V. With an approximation-error metric for performance defined and specified (to be 
described in details in Section 3), we would need only eight biases for each tuning filter from 
30 biases. Our calculations based on the results to be presented in Section 3 (the MBS 
approach) show that the reduced bias sets for the tuning filters (a), (b) and (c) are{-2.2, −1.2, 
−0.8, −0.2, 0.2, 0.4, 0.6, 0.8 V}, {-3.0, −2.8, −2.6, −1.8, −1.4, −0.6, −0.4, 1.4 V} and {-2.0, 
−1.6, −0.8, 0.2, 1.4, 1.8, 2.4, 2.6 V}, respectively. Thus, to approximate all three tuning filters 
with the same prescribed approximation error, then we would need 21 biases in total. 

In the following section we will provide a solution that addresses both of the 
aforementioned challenges. 

3. Uniformly-accurate compressive spectral-sensing algorithm 

We begin by defining an extension of the ST algorithm in a generalized setting for which the 
set of biases and the hypothetical spectral filters (to be approximated by the DWELL spectral 
responses) are arbitrarily specified. Consider the collection, FDWELL = {R1, …, RK}, of the 
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DWELL spectral responses corresponding to a maximal set of biases BDWELL = {v1,…,vK}; 
namely, Ri(λ) is the spectral response of the DWELL detector when voltage vi is applied to it. 
Let FMS = {f1, …, fM} be a collection of hypothetical multispectral sensing filters designed for 
specific sensing problems of interest and let b⊂{1,…, K} be the index set for a specified 

subset of biases from BDWELL. For each filter fi, let ∑
∈

=
bj

j

b

ji

b

i Rwf )(ˆ )(
,

)( λ  be its approximation 

using the set of biases identified by b. In this approximation, the weight vector wi
(b) = [wi,1

(b), 
…, wi,|b|

(b)] is calculated according to Eq. (3) with the proviso that the matrices A and Φ are 
now restricted to the set of biases specified by b, which we denote as A(b) and Φ(b). More 
precisely, 

 ( ) ( ) T ( ) ( ) ( ) T T ( ) 1 ( ) T
i[( ) α( ) ( ) ( )],    1, , . b b b b b b b

i f i Mλ− = + + = … w A A Φ A Q QA A . (3) 

(In the absence of noise (Φ(b) ≡ 0), the solution in Eq. (3) is simply the projection of the 
function fi onto the linear space generated by the functions Ri, i∈b.) As a performance metric 
for approximating all the hypothetical spectral filters in FMS using the index set b for the 
specified bias collection, we define the average approximation error 

 

( )
max

min

max

min

2
( )

1

1 2

ˆ( ) ( )

100  .

( )

b

i i
M

b

i

i

f f d

e M

f d

λ

λ

λ

λ

λ λ λ

λ λ

−

=

−

= ×
∫

∑
∫

  (4) 

We finally introduce a relative error metric, P(b), that puts eb in the context of the minimum 
error possible, e{1, …,  K}, when using all K biases are used. Namely, 

 ( )
{1,  , } 100  – .b

b KP e e …= ×   (5) 

The e{1, …,  K} is the reference (minimal) error used later for benchmarking the performance in 
reduced bias sets. For a given performance level θ, our goal is to find a minimal subset of 
biases, Bmin ⊂ BDWELL with bmin ⊂{1,…, K}, for which we are guaranteed that min( )bP ≤ θ. Next, 
we introduce two algorithms for determining Bmin. 

3.1 Bias-selection algorithms 

Two bias-selection algorithms are reported here: the Minimal-Bias-Set (MBS) algorithm, 
which gives optimal results using an exhaustive search approach, and the Approximate 
Minimal-Bias-Set (AMBS) algorithm, which offers a suboptimal solution, based on a greedy 
search approach, but offers huge computational advantage over the MBS algorithm. (A 
minimal collection of biases may not be unique.) 

The procedure of MBS algorithm is straightforward. It searches among all the minimal 
number of required biases q* and a corresponding q*-bias collection Bmin is identified by the 
index set bmin for which the resulting error metric min( )bP is below the prescribed error 

threshold { }( 1,..., )K
Pθ ≥ . More precisely, the exhaustive-search method for identifying the 

minimal bias subset Bmin is described through the following steps. 

Minimal-Bias-Set Algorithm 

(1) Initialization step: set q = 1. 

(2) Calculate 
( ) ( ) ( )

MS 1{ , , q q qb b b

M
= … }w wW and 

( )qb
P for all {1, , 

q
b K⊂ … } such 

that qb q= . 
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(3) Identify the bias subset *
q

B with the index set *
q

b for which 
( )*

qb
P is at a minimum; 

namely, 
( )*

{1, , },| |

arg min q

q q

b

q
b K b q

b P
⊂ =

=
…

 . 

(4) If 
*( )qb

P θ≤ , then the minimal number of required biases, q*, is calculated set to q and 
*
q

b is set to bmin. As a result, Bmin = *
q

B . If 
*( )qb

P θ>  and q < K, then increment q by 1 

and go to Step 2. 

Note that since { }( 1,..., )K
Pθ ≥  the algorithm described in Steps 1-4 must terminate in at most K 

steps. Also note that in general 1( ) ( )* *
q qb b

P P +≥ , q = 1, …, K-1. 
This MBS algorithm is optimal but it is computationally feasible only when q is 

reasonably small (e.g., q = 4 and K = 30 as in the example considered in Section 4.) since the 

identification of each *
q

b involves 
K

q

 
 
 

calculations of 
( )qb

P . For large q values the number of 

bias combinations to consider becomes enormous, which results in unrealistically large 
computing times. As an alternative, we can employ a greedy approach we referred to as 
AMBS, which is suboptimal, where the biases for the q + 1 are selected by augmenting the q 
biases from an earlier stage of the selection process by a single bias that is selected optimally 
from the remaining K-q biases. The number of searches for each q is therefore reduced from 

K

q

 
 
 

 to K-q. To avoid falling in local minima early on in the selection process, we start the 

process by first performing the exhaustive-search bias selection process for a small q value 
(typically q = 3 in our examples) and then employ the greedy approach. The AMBS algorithm 

in determining a suboptimal minimal bias subset, minBɶ , is described through the following 

steps. 

Approximate Minimal-Bias-Set Algorithm 

(1) Initialization step: select a (small) initial value, q0, and use the exhaustive search 

method to identify the bias subset 
0

*
qB  with the index set 

0

*
qb for which 

*

0
( )qb

P is at a 

minimum. Set q = q0. If
*( )qb

P θ≤ , *
q

b is minbɶ . Then *
min q

B B=ɶ and the search process is 

complete. If
*( )qb

P θ>  then go to Step 2. 

(2) Calculate
*

*

( { })

\

arg min q

q

b j

q
j K b

j P
∈

= ∪
 and define the augmented bias 

subset * *
1 { }

qq q jB B B+ =ɶ ∪ . Here, *\
q

K b is the set of all integers that are in K but not 

in *
q

b . If
*

1( )qb
P θ+ ≤
ɶ

 then set q* = q + 1 and minbɶ  = *

q
b ∗
ɶ . As a result, *

*
min q

B B=ɶ ɶ , which 

completes the search process. 

(3) If
*

1( )qb
P θ+ >
ɶ

and q < K, increment q by 1 and go to Step 2. 

Note that since { }( 1,..., )K
Pθ ≥ , the algorithm described in Steps 1–3 must terminate in at most K 

steps. 
The AMBS approach falls in the more general category of matching pursuit algorithms 

reported by Cotter et al. [19] and Davis et al. [20]. Both approaches are based upon a greedy 
principle and share the common objective of searching for a sparse solution to represent the 

#150216 - $15.00 USD Received 1 Jul 2011; revised 27 Aug 2011; accepted 28 Aug 2011; published 22 Sep 2011
(C) 2011 OSA 26 September 2011 / Vol. 19,  No. 20 / OPTICS EXPRESS  19460



signal based upon a suboptimal forward search. In both approaches, a search is made through 
a “dictionary” in an iterative fashion rather than solving the optimal approximation problem. 
However, there are two key differences in the implementation of the search processes used in 
the AMBS and that used by the matching pursuit algorithms. The AMBS algorithm selects the 
vector (or subset) from a given dictionary based upon minimizing the “first-order residual,” 
which simply corresponds to the error between the true signal and the projected signal. On the 
other hand, the matching pursuit algorithm chooses the vector from the set of dictionary 
vectors iteratively by sub-decomposing the residual to represent the original signal, thereby 
considering “higher-order residuals,” as explained in [19,20]. Another key difference is that 
the AMBS involves an important initialization step, based on exhaustive search, for finding a 
good initial value in order to avoid falling in local minima early on in the selection process. 
The greedy process then follows the initial step. 

3.2 Uniformly-accurate compressive spectral sensing algorithm 

The uniformly-accurate compressive spectral sensing (UCSS) algorithm is summarized in 
Fig. 3. There are three inputs specified by the user. The first input is the collection, FDWELL 
and the corresponding maximal set of biases BDWELL. The second input is the collection FMS of 
hypothetical multispectral sensing filters for the specific sensing problems of interest. The 
third and final input is the user-prescribed worst-case error threshold, θ, for the error metric 
P

(b). 

 

Fig. 3. Illustration of the remote-sensing applications of data compressive UCSS algorithm. 

Here the threshold θ is selected such that it is achievable, namely, θ ≥ P
({1, …, K}). The set of 

indices, bmin⊂{1,…, K}, is obtained from either MBS or AMBS algorithms described in 
Subsection 3.A, and it defines a minimal set of biases BMS. The optimal collection of weight 

vectors corresponding to with bmin and FMS is min min( ) ( )
MS 1{ , , b b

M
= … }w wW  (here M is the 

number of spectral filters in FMS). Note that each weight vector is of length |Bmin|. In the final 
stage of the UCSS algorithm, the photocurrents from the spectrally tunable detector sensing a 
target at the minimal bias-set BMS; these photocurrents are the most relevant spectral data set 
for any specific application represented by FMS. The photocurrents are then linearly combined 
according to the subset of weight vectors from MSW , corresponding to the spectral filters in 

FMS, to yield the desired features equivalent to those that we would have obtained had we used 
a broadband detector in conjunction with the spectral filters in FMS. 
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3.3 Generalization to linear space generated by FMS 

Suppose that we are interested in sensing using a hypothetical filter, fɶ , a linear superposition 

of individual filters in the collection FMS:
1

( ) ( )
M

i i

i

f fλ β λ
=

=∑ɶ  where βi’s are scaling factors that 

are chosen to control the shape of ( )f λɶ ). For example, if M = 2, β1 = −1 and β2 = 1, then 

2 1( )  ( ) ( ),f f fλ λ λ= −ɶ  which yields the differences of the spectral features at λ2 and λ1. Is it 

possible to extend the ST algorithm to accommodate this scenario without the need for 
redoing the bias-selection optimization problem (Subsection 3.A) for the extended filter 

set { }
MS

F f∪ ɶ ? Indeed, the linear nature of the sensing problem at hand dictates that the 

required weight vector min( )bwɶ associated with fɶ  is nothing but a linear superposition of the 

scaling factors of the individual filter elements in
MS

F : 

 min min( ) ( )

1

 
M

b b

i i

i

β
=

= ∑w wɶ   (6) 

This can be seen by simply applying the formula in Eq. (3) to the function 

1

( ) ( )
M

i i

i

f fλ β λ
=

=∑ɶ and a simplifying the result to obtain 

 min min min min min min min( ) ( ) ( ) ( ) ( ) ( ) ( )T T T 1 T

1

 [(A ) A (A ) Q QA ] [(A ) ( )]
M

b b b b b b b

i i

i

fβ α λ−

=

= +Φ +∑wɶ , 

which is simply min( )

1

 
M

b

i i

i

β
=
∑ w . With min( )bwɶ available, the hypothetical filter fɶ is approximated 

by 

 ( )
min

min

| |
( )

1

ˆ
( ) ( ).

b
b

i j
j

j

f λ R λ
=

=∑ wɶ   (7) 

4. Case study on optimal bias selection 

4.1 Specification of sensing filters and their approximations by a minimal bias set 

We experimentally measured the bias-dependent spectral responses of the DWELL 
photodetector, FDWELL = {R1(λ), R2(λ),…, R30(λ)}, with 30 different biases corresponding to 
the bias set BDWELL = {-3, −2.8, −2.6, …, 3 V}. We also set the error threshold, θ, to 8%, and 
further specified FMS as the collection of six spectral sensing filters {f1(λ), f2(λ),…, f6(λ)}. 
Specifically, f1(λ), f2(λ) and f3 (λ) are defined as three disjoint hypothetical narrowband 
triangular sensing filters centered at 7.4 µm, 8.8 µm and 10.2 µm, each with a full-width at 
half maximum of 0.5 µm. We select the filters f4(λ), f5(λ) and f6(λ) to be the actual 
transmittances of three optical filters in the ranges 7.5-10.5 µm, 8.0-9.0 µm and 8.5-11.5 µm. 
For the generalization in Subsection 3.B, we specified two linearly superpositioned filters: a 

spectral integrator 1( ) f λɶ and a spectral differentiator 2 ( )f λɶ . The filter 1( ) f λɶ  is the sum of 

f1(λ), f2(λ) and f3 (λ), and the filter 2 ( )f λɶ is the difference between f2(λ) and f1(λ), as shown in 

the dotted lines in Fig. 4(c). The UCSS algorithm was invoked and a minimal set of four 
biases was obtained by using the MBS algorithm: BMS = {-3, −0.8, 1.0, 2.8 V} (with the 
corresponding set of indices, bmin). The corresponding collection of six weight 

vectors min min( ) ( )
MS 1 6{ , , b b= … }w wW was also found, resulting in a relative error metric min( )bP  = 
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6.7%, which satisfies the prescribed error threshold of θ = 8%. Approximations of the member 
of FMS are shown in solid blue lines of Fig. 4(a) for f1(λ), f2(λ) and f3 (λ), and in solid blue 
lines in Fig. 4(b) for f4(λ), f5(λ) and f6(λ). Since an error metric is only 6.7%, shapes of 
approximated FMS using minimal four biases are very similar to the reference (the 
approximated FMS using entire 30 biases) shown in solid red lines of Fig. 4. This demonstrates 
that the use of minimal biases selected by the MBS algorithm does not sacrifice performance. 
Also note that as compared to the result in Fig. 2 by the original ST algorithm (which uses 21 
biases), the use of the MBS algorithm has significantly reduced the number of required biases 
down to four, resulting in a reduction by a factor of 7 in the required biases for sensing. The 

weight vector min

1  b( )wɶ associated with the spectral integrator 1( ) f λɶ is obtained by solving 

Eq. (6) with MSW  and the scale factors 1 3... 1β β= = = and 4 6... 0β β= = = . Similarly, for the 

spectral differentiator 2 ( )f λɶ , the weight vector min

2  b( )wɶ is found by solving Eq. (6) with 

MSW and the scale factors 1 1β = − , 2 1β = and 3 6 0β β= = =… . Approximations of 1( )f λɶ  and 

2 ( )f λɶ  are shown in Fig. 4(c). 

(a)

)(1 λf )(2 λf )(3 λf

(b)

)(4 λf )(5 λf )(6 λf

(c)

)(
~
1 λf )(

~
2 λf

(a)

)(1 λf )(2 λf )(3 λf

(b)

)(4 λf )(5 λf )(6 λf

(c)

)(
~
1 λf )(

~
2 λf

 

Fig. 4. The MBS algorithm is used to approximate the specified spectral-filter collection FMS: 
(a) f1(λ), f2(λ) and f3 (λ) are hypothetical narrowband triangular sensing filters and (b) f4(λ), f5(λ) 
and f6(λ) are spectral matched filters using only minimal four biases BMS out of K = 30 biases, 
BDWELL. The successful approximations using minimal four biases are shown in blue, which 

corresponds to the error metric 
)( minb

P  = 6.7% as compared to the approximations using all 
30 biases shown in red. The approximations (in blue) of two superposition filters, the spectral 

integrator )(
~

1 λf  and the spectral differentiator 2 ( )f λɶ , are shown in (c) along with the 

approximations using all 30 biases in red. 
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Performance of the AMBS algorithm for FMS 

In this subsection, we evaluate the performance of the AMBS algorithm for approximating the 
specified collection FMS. The results from the AMBS are also compared to those of the MBS. 
For evaluation purposes, we applied the AMBS algorithm to three different cases by 
specifying three different error thresholds: (i) θ = 8%, (ii) θ = 6% and (iii) θ = 5%. Results for 
all three cases are given in Tables 1, 2 and 3, respectively. We observed that the minimal bias 
set identified by the AMBS algorithm does not exactly match that obtained by the MBS 

algorithm in all three cases. However, the error metrics min,( )AMBSB
P  (7.1%, 5.4% and 4.6%) for 

the AMBS are all within 0.5% of min,( )MBSB
P  (6.7%, 5.1% and 4.4%) for the MBS, 

demonstrating almost identical performance. Also note that for all three cases, the search time 
by the AMBS algorithm is faster than the MBS algorithm. Particularly, in case (iii), the search 
time by the AMBS algorithm is 69 times faster than the MBS algorithm. Thus, the AMBS 
algorithm can be a good alternative to the MBS algorithm since it can generate comparable 
results with less computational effort. 

Table 1. Summary of Results for Case (i) Comparing between MBS and AMBS 
Algorithms for the Approximations of FMS 

MBS 
 

Minimal bias set (V) BMS, MBS = {-3, −0.8, 1, 2.8} 
Minimal error metric (%) min,( )MBSB

P  = 6.7 
Bias search time (sec) 233.4 

AMBS 
 

Minimal bias set (V) BMS, AMBS = {-3, −1.4, 1.4, 2.8} 
Minimal error metric (%) min,( )AMBSB

P  = 7.1 
Bias search time (sec) 62.1 

Improvement factor in time 233.4/62.1 = 3.8 

Table 2. Summary of Results for Case (ii), Comparing between MBS and AMBS 
Algorithms for the Approximations FMS 

MBS 
 

Minimal bias set (V) BMS, MBS = {-3, −1.4, −0.8, 1, 2.8} 
Minimal error metric (%) min,( )MBSB

P  = 5.1 
Bias search time (sec) 1323.5 

AMBS 
 

Minimal bias set (V) BMS, AMBS = {-3, −1.4, −0.4, 1.4, 2.8} 
Minimal error metric (%) min,( )AMBSB

P  = 5.4 
Bias search time (sec) 56.7 

Improvement factor in time 1323.5/56.7 = 23.4 

Table 3. Summary of Results for Case (iii), Comparing between MBS and AMBS 
Algorithms for the Approximations of FMS 

MBS 
 

Minimal bias set (V) BMS, MBS = { −3, −1.4, −0.8, 0.8, 2.2, 3} 
Minimal error metric (%) min,( )MBSB

P  = 4.4 
Bias search time (sec) 4008.5 

AMBS 
 

Minimal bias set (V) BMS, AMBS = {-3, −1.4, −0.4, 1, 1.4, 2.8} 
Minimal error metric (%) min,( )AMBSB

P  = 4.6 
Bias search time (sec) 57.9 

Improvement factor in time 4008.5/57.9 = 69.2 

4.2. Flexibility in the minimal bias selection 

In Subsection 4.A we identified a minimal set of four biases. However, we have seen some 
level of tolerance to these bias values with a minimal penalty in performance. In this 
subsection we generate four groups of biases that offer a more flexible specification of the 
minimal set of required biases. In particular, an alternative minimal set of biases can be 
obtained by selecting a bias from each group of biases. 
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To introduce flexibility in the bias selection, we allowed the MBS algorithm to find the 
top-twenty ranked bias sets instead of single minimal bias set BMS. The tolerance in the error 

metric is set to 0.2% as compared to the original error metric of min( ) 6.7%b
P = . With this 

procedure, we generated 10 biases in total (there are at most 80 biases that can be generated 
but many of these where duplicates). We can then list all these 10 biases and identify four 
groups. The significance of each bias out of the 10 biases is determined by the number of 
times it is selected by the top-twenty bias sets. The significance of the 10 biases is illustrated 
by the histogram shown in Fig. 5. By visual inspection, four different bias groups G1, G2, G3, 
and G4, are identified and listed in Table 4. Note that the originally selected optimal biases are 
members of these groups, as identified by thick text in Table 4. 

 

Fig. 5. The histogram illustrates the significance of each bias member in the set of 10 biases. 
By visual inspection, we identified four distinct bias groups. 

Table 4. Identified Members in Four Bias Groups for Approximating The Specified Filter 
Collection FMS* 

Bias group Identified member 
G1 {-3 V} 
G2 {-1.4, −1.2, −1, -0.8 V} 
G3 {0.8, 1.0 V} 
G4 {2.6, 2.8, 3 V} 

*Values in thick text are those selected by 
the MBS bias-selection algorithm. 

Our ability to identify the populated bias group, for example G4, is attributable to the 
similarity in the DWELL’s spectral responses at these three biases and their comparable 
SNRs. The corresponding spectral responses are compared in Fig. 6, showing the similarity 
among them. It is interesting to note that the collections of biases, {-2.8, −2.6, −2.4, −2.2, −2, 
−1.8, −1.6 V}, {-0.6,-0.4, −0.2, 0.2, 0.4, 0.6 V} and {1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4 V} are 
never selected due to the fact they have little overlap with the members of FMS as well as their 
relatively low SNRs. We have verified that the SNRs for the bias collection {-2.8, −2.6, −2.4, 
−2.2, −2, −1.8 V} are much lower (< 80) than those for −3 V (> 300), which explains why −3 
V is always selected while its neighboring biases are not selected. Moreover, the biases −0.2, 
0.2, 0.4, and 0.6 V are never selected because their SNRs (< 10) are the lowest among all the 
biases. 
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Fig. 6. Similarity of the DWELL’s spectral responses at 2.6, 2.8 and 3V. 

5. Experimental results on spectrometry and classification 

In order to experimentally demonstrate the multispectral sensing capability of the UCSS 
algorithm, we have applied the collection, FMS, of filters described in Subsection 4.A to two 
common remote-sensing applications. The first application is spectrometry, termed 
algorithmic spectrometry here. It aims to reconstruct samples of the spectra of any unknown 
target of interest at prescribed tuning wavelengths without the use of any physical dispersive 
elements or optics. This is done by means of forming a weighted linear superposition of the 
measured bias-dependent photocurrents, measured by the DWELL detector, according to a 
predetermined set of weights obtained from the UCSS algorithm. The measured photocurrents 
are obtained by probing the unknown target by the DWELL detector using a minimal bias set 
provided by the MBS algorithm. The result of this weighted-superposition process is a set of 
“superposition photocurrents” that represent samples of the transmittance at desired tuning 
wavelengths. In addition to sampling the spectrum of the unknown target, we can also extract 
more general spectral features, such as an spectral average over multiple wavelengths or slope 
of the spectrum at specified wavelengths, by performing weighted superposition using other 
predetermined weights (also from the UCSS algorithm) applied to the same bias-dependent 
photocurrent. 

The second application is the classification of a probed unknown object as that having one 
of multiple known transmittance spectra (the spectra are selected from the members of FMS), 
based on the concept of algorithmic spectral matched filtering. The idea of spectral matched 
filtering is to use multiple weight vectors (as many as the number of candidate transmittance 
spectra) obtained from the UCSS algorithm that can be used by a “classifier” to perform a 
weighted linear superposition of the measured bias-dependent photocurrents. The measured 
photocurrents in this case results from probing the unknown target whose transmittance 
spectrum is any one of multiple possible spectra. The result is a set of extracted “superposition 
features,” which the classifier further converts to the “label” of the unknown object (label of 
its spectrum). Details of the experimental procedure and results for these two remote-sensing 
applications are given next. 

5.1 Experimental results on target spectrometry 

Three spectral filters, f1(λ), f2(λ) and f3(λ) (members of FMS), are selected to sample the 
transmittance of the unknown target centered at λ1 = 7.4 µm, λ2 = 8.8 µm and λ3 = 10.2 µm. 
The unknown target was selected as the spectral filter in the range 7.5-9.5 µm, whose 
transmittance spectrum is shown in Fig. 7, solid red line. 

#150216 - $15.00 USD Received 1 Jul 2011; revised 27 Aug 2011; accepted 28 Aug 2011; published 22 Sep 2011
(C) 2011 OSA 26 September 2011 / Vol. 19,  No. 20 / OPTICS EXPRESS  19466



 

Fig. 7. Three spectral filters, f1(λ), f2(λ) and f3 (λ) in the filter collection FMS are used to sample 
the unknown target, whose transmittance is shown in red. For reference, the ideal triangular 
spectral filters are also shown in dashed line. Approximated filters in blue line were obtained 
by the UCSS algorithm using minimum four biases −3.0, −0.8, 1.0, 2.8 V selected by the MBS 
algorithm. 

We measured the photocurrent vector, Ispec, as the DWELL photodetector sequentially 
probed the unknown filter target using the minimal set of four biases {-3.0, −0.8, 1.0, 2.8 V} 
selected by the MBS algorithm as described in Section 4. For comparison, the photocurrent 
measurement was also repeated for the following auxiliary bias sets: the best-five bias set {-3, 
−1.4, −0.8, 1, 2.8 V}, the best-six bias set {-3, −1.4, −0.8, 0.8, 2.2, 3 V} and the complete bias 
set consisting of all 30 biases. Note that in the best-five and best-six bias set cases the biases 
were also selected using the MBS algorithm described in Section 3 by constraining the 
number of biases to 5 and 6, respectively. Specifically, the measured specI  is linearly 

combined with each weight vector, yielding a superposition photocurrent min( )
spec

ˆ )b T

i i
I = (w I , 

where i = 1,2, 3. As referred to [14], this superposition photocurrent ˆ
i

I , termed “experimental 

reconstruction” best approximates the transmittance of unknown target that we would have 
obtained if we look at the same target through the ideal triangular spectral filter. Recall that in 
Subsection 4.A, the UCSS algorithm generated three weight vectors: 

min min min( ) ( ) ( )
1 2 3,  and  b b bw w w  corresponding to fi(λ), i = 1, 2 and 3. 

The experimental reconstructions using minimal four biases are shown in Fig. 8 (blue 
circle) and represent the sampled transmittances of target at λ1, λ2 and λ3. We also generated 
the estimated transmittances resulting from sampling the true target transmittance by ideal 
triangular filters centered at λ1, λ2 and λ3, shown in Fig. 8 (red square), and used them as a 
reference for accurate comparison, Results show that both the reconstruction and the reference 
at λ1 and λ3 are close to zero. These values are consistent with the true target transmittance 
shown in Fig. 7 (red) since λ1 and λ3 correspond to the stopband where the transmittance is 
zero. At λ2 = 8.8 µm, the reconstructed transmittance is within 30% error as compared to the 
corresponding reference (0.123 and 0.171 in Table 5). Also for a comparison, the true target 
transmittance at 8.8 µm in Fig. 7 (red) is 0.381, which is the ground truth. Note that the 
ultimate goal of our algorithmic sensing approach is to estimate this true transmittance in the 
best way possible; the use of the narrowest “triangular filter” is just a one way for achieving 
this goal. 
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Fig. 8. Experimentally reconstructed transmittances (blue circle) at 7.4 µm, 8.8 µm and 10.2 
µm extracted by the UCSS algorithm using minimum four biases −3.0, −0.8, 1.0, 2.8 V selected 
by the MBS algorithm were obtained. Results are compared to the sampled transmittances by 
the ideal triangular spectral filters (red square) considered as the reference. 

Results from the other bias selections (best-five and best-six bias sets) by the MBS 
algorithm are also shown in Table 5. Here, we observed that the reconstructions at 7.4 µm and 
10.2 µm are close to zero for all bias selections. At 8.8 µm, the reconstructions for all bias 
selections are within 8%. Thus, the use of minimal four biases does not sacrifice the 
performance of UCSS algorithm in successfully extracting the narrowband feature. 

Table 5. Comparison of Experimental Reconstruction of the Transmittance at Three 
Wavelengths Using the Minimal Four Biases by the MBS Algorithm and the Associated 

Reconstruction Errors to those Using other Bias Selections by the MBS Algorithm (Best-5 
Biases, Best-6 Biases and all 30 Biases) 

Experimental 
reconstruction 

Number of selected biases Transmittance 
sampled by 

ideal triangle 
Min. 4 biases Best-5 biases Best-6 biases All 30 biases 

at 7.4 µm 0.02 0.021 0.021 0.021 0.001 
at 8.8 µm 0.123 0.126 0.128 0.133 0.171 

at 10.2 µm 0.007 0.007 0.008 0.008 0.001 

Note that in Table 5 we find the error between the experimental reconstruction and the ideal 
reconstruction (using ideal triangular filters) starts to increase at some point as more biases are 
used. As we explained in our prior work [13], this observation is not contradictory to the 
optimality of the algorithm since sets of weights determined in the spectral tuning algorithm 
do not guarantee minimizing the error between the actual target spectrum and the 
reconstruction. Instead, what these weights do guarantee is that the error between the ideal 
triangular tuning filter and the approximate triangular tuning filter is minimized. Indeed, the 
error in the synthesized triangular filters do decrease monotonically in the number of biases 
used, achieving a minimum error when all 30 biases are used. Note that the quality of the 
reconstructed transmittance not only depends on the quality of approximation of the triangular 
filter but also on actual transmittance (its variation as a function wavelength within the 
passband of the triangular filter). We also suspect that for the case of reconstructing spectral 
content at λ3 = 10.2 µm, when the algorithm uses all 30 biases, those biases beyond the fifth 
bias selected have weak signal content and their inclusion simply adds more noise to the 
estimate, hence increasing the reconstruction error. 

Moving onto the superposition filter case (as described in Subsection 4.A), the UCSS 

algorithm found two weight vectors,  ~ min

1
)(w b

and  ~ min

2
)(w b

, that approximated the spectral 

integrator 1( ) f λɶ and the spectral differentiator 2 ( )f λɶ , respectively. Each weight vector is 

linearly combined with specI , obtaining the reconstructed spectral features min( )
spec

ˆ )b T

i i
=I (w Iɶ ɶ . 
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Recall that for 1( )f λɶ , 1Îɶ approximately represents the sum of reconstructed transmittances at 

λ1, λ2 and λ3, as illustrated in Fig. 9(a). The average of reconstructed transmittances can be 

obtained after dividing 1Îɶ  by the number of center wavelengths (i.e., dividing by 3). In the 

case of 2 ( ) f λɶ , 2Îɶ  represents the difference in the transmittance values at λ1 and λ2, as shown 

in Fig. 9(b). As a result, the slope of the transmittance curve can be approximated by dividing 

2Îɶ  by λ2 - λ1. 

(a)

(b)

(a)(a)

(b)(b)
 

Fig. 9. Applications of two linearly superpositioned filters (i.e., (a) the spectral integrator 

 )(
~

1 λf and (b) the spectral differentiator )(
~

2 λf ) to the spectrometry problem of unknown filter 

target. Approximations 1

ˆ
( )f λɶ and 2

ˆ
( )f λɶ  can extract the spectral average and slope of 

unknown target, respectively. 

The experimentally extracted values of the averaged transmittance values (captured 

by 1

ˆ
( )f λɶ ) and the approximated slope of transmittance (captured by 2

ˆ
( )f λɶ ) are listed in 

Table 6. The experimental reconstructions are compared to the values obtained by using ideal 

spectral integrator and differentiator (shown in dotted line of Fig. 4(c)). For 1

ˆ
( )f λɶ , the 

estimate of the averaged transmittance is within 14% error as compared to the ideal value (i.e., 

0.058 in Table 6). For 2

ˆ
( )f λɶ , the estimated slope is within 40% error as compared to the 

reference (i.e., 0.121 in Table 6). In addition, we observed that the use of the minimal four 
biases by the MBS algorithm yields consistent results with less than 9% error as compared to 
values for the other (larger) bias selections 
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Table 6. Experimentally Extracted Averaged Transmittance Captured by 1

ˆ
( )f λɶ and 

Slope of Transmittance Captured by 2

ˆ
( )f λɶ  for Different Bias Selections: Minimum Four 

Biases, Best-Five Biases, Best-Six Biases and All 30 Biases* 

Experimental 
reconstruction 

Number of selected biases Ideal value 

Min. 4 biases Best-5 biases Best-6 biases All 30 biases 
Averaged 

transmittance 
 

0.05 
 

0.052 
 

0.052 
 

0.054 
 

0.058 

Slope of 
transmittance 

 

0.073 
 

0.075 
 

0.076 
 

0.08 
 

0.121 

*Results are compared to the reference values obtained by using the ideal spectral integrator and 
differentiator. 

5.2 Experimental results on target classification 

Here, the target spectral filters comprising the classes of spectra are selected as f4(λ), f5(λ) and 
f6(λ) (7.5-10.5 µm, 8.0-9.0 µm and 8.5-11.5 µm). The photocurrent vector classI was measured 

as the DWELL photodetector was exposed to radiation transmitted through three target filters, 
f4(λ), f5(λ) and f6(λ) using the same bias sets used in the spectrometry problem of Subsection 
5.A. For each filter, photocurrent measurements were repeated at least 20 times and averaged 
to minimize the temporal variability of DWELL photodetector. Recall that the use of the three 

weight vectors, min min min( ) ( ) ( )
4 5 6,  and   b b bw w w  in Subsection 4.A had resulted in optimal 

matching of the reconstructed transmittances to the actual transmittances f4(λ), f5(λ) and f6(λ). 

We denoted the corresponding reconstructed matched filters as 4 5
ˆ ˆ( ) , ( )f fλ λ and 6

ˆ ( )f λ . For 

the classification problem, each matched filter is labeled with a specific class number: Class-1 
corresponding to f4(λ), Class-2 corresponding to f5(λ), and Class-3 corresponding to f6(λ). In 

the classifier, min min min( ) ( ) ( )
4 5 6,  and   b b bw w w are linearly combined with the incoming test 

data, classI , resulting in three synthesized features: min( )
1 4 class( )b TF = w I , min( )

2 5 class( )b TF = w I  and 
min( )

3 6 class( )b TF = w I . We denote the feature vector formed by these synthesized features by 

1 2 3( , , )F F F=F . Finally, the classifier assigns this F to class *
i whose feature value, *

i
F , is the 

highest among the three features; more precisely, *

{1,2,3}

arg max
i

i

i F
∈

= . 

With the minimal four-bias set used, the results show that the classifier has correctly 
assigned all three test data ( classI ) to their respective classes, as shown in Fig. 10. In our 

experimental demonstration, our classifier yielded 100% accuracy. This perfect classification 
was obtained owing to the fact that the three target spectral filters were reasonably separable. 
However, if targets are not separable to begin with (i.e., if the extracted features from multiple 
targets are similar), then we would expect the accuracy of classifier to be reduced. 
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Fig. 10. Classification results for identifying three experimental test data, (I)class. The classifier 
has successfully assigned the data to Class-1 (see (a)), the data to Class-2 (see (b)), and the data 
to Class-3 (see (c)). 

When we use the best-five biases (gray bars in Fig. 11), the best-six biases (blue bars in 
Fig. 11) and all 30 biases (green bars in Fig. 11), we also obtain 100% accuracy. This implies 
that the use of the minimal four biases in the classification problem produced equivalent 
performance as compared to the result using all the 30 biases. 

 

Fig. 11. Comparison of classification results for minimal four biases (white) to other bias 
selections: best-five biases (gray), best-six biases (blue) and all 30 biases (green) for 
identifying the three experimental test data, (I)class to (a) Class-1, (b) Class-2 and (c) Class-3. 
Note that the use of minimum four biases obtained by the MBS algorithm in the UCSS 
algorithm achieved almost identical result compared to the case using all 30 biases. 

It is important to mention, that we have observed that the temporal variation of the test 
data affects the outcome of the classifier if insufficient number of photocurrent measurements 
is available. For example, over 30% classification error was obtained when we used only 9 
photocurrent measurements (per class and averaged). However, when we use 10 or more 
photocurrent measurements, the classification error was highly improved; for example, with 
16 or more photocurrents measurements, 100% classification was achieved. 

6. Conclusions 

In this paper we reported a novel data compressive spectral sensing algorithm in conjunction 
with the bias-dependent spectrally tunable DWELL photodetector that identifies and employs 
a minimal set of required biases subject to a specified performance level. The identification of 
a minimal bias set enables the detector to sense only the most relevant and least noisy bias-
dependent spectral bands for specific sensing applications. Moreover, the minimal bias set 
provides a uniformly accurate solution across the collection of specified spectral sensing 
filters, which captures the corresponding multispectral features for remote-sensing 
applications of interest. We implemented the algorithm to approximate the collection of six 
spectral sensing filters and the algorithm identified the minimal set of only four biases for 
successful approximation of the filter collection. By sensing using the DWELL at these four 
biases only, we successfully performed two remote-sensing applications that utilize the six 

(c) (b) (a) 

(a) (b) (c) 
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spectral sensing filters; these applications were spectrometry of unknown filter target and the 
classification of three filter targets. In the spectrometry problem, we were able to successfully 
reconstruct three samples of the transmittance of an unknown test target. In addition, we are 
able to reconstruct the average of the transmittance across three wavelengths and the slope of 
the transmittance spectrum at a given wavelength. For the classification problem, we were 
able to use the DWELL measurement using the four applied biases to successfully classify 
three spectral filters selected from the collection of six spectral filters. 

It is to be noted that in essence, what our approach is capable of doing is to synthesis the 
effect of an arbitrary optical filter by solely using the optoelectronic properties of the 
DWELL. The ability to do so successfully gives optical filtering a fresh perspective. Our 
approach can potentially be used beyond the DWELL sensor; it can be applicable to 
traditional multi-color infrared detectors, especially if there is overlap in the spectral bands. 
For example, our approach can potentially be applied to quantum-well detectors which 
already demonstrated voltage tunable multicolor detection reported in [21]. From a device 
perspective, this work helps us understand rigorously the reach of the spectral diversity of the 
DWELL device. 

We wish to point out that the MBS and AMBS algorithms can be further enhanced by 
introducing an extra preliminary stage that eliminates insignificant spectral bands, based on 
certain SNR requirement, before applying either the MBS or AMBS algorithms. This can be 
achieved by building such de-selection process in the metrics used by the MBS and AMBS 
algorithms. 

Finally, effort is underway to implement this new data-compressive DWELL-based 
sensing paradigm in a focal-plane-array (FPA) platform using a novel custom-designed 
readout integrated circuit, which can directly output spectral signatures or object classes in 
near real-time spectral sensing. 
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