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ABSTRACT
Infrared imaging suffer from an undesired fixed-pattern noise
mainly due to the response disparity of the individual detectors
in a focal-plane array. Even though this nonuniformity noise
can be removed after a blackbody calibration procedure, it
tends to reappear due to the intrinsic nature of infrared sens-
ing. Online nonuniformity correction techniques have been
employed for denoising and tracking the drift, also avoiding to
halt normal camera operations. In this paper, a new reference-
free infrared imaging quality metric is presented. The main
purpose of the proposed metric is to evaluate the quality
of the denoised infrared images in real-time, exchanging the
typical need of calibration sources by the knowledge of the
fixed-pattern noise statistics. We compare the performance
of the proposed metric against standard reference-based and
reference-free metrics, using a variety of real-time nonunifor-
mity correction techniques. Results show that the new metric
is able to track the nonuniformity correction performance,
constantly evaluating the quality of the denoised infrared
image sequences.

Keywords: Image Quality Index, Nonuniformity Correc-
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1. INTRODUCTION

Fixed-pattern noise (FPN) is a serious and undesired prob-
lem found in infrared focal-plane array (IRFPA) cameras,
despite of the advances in fabrication techniques. The FPN is
caused by the differences of the photoresponse between detec-
tors in the FPA, even when they measure an uniform radiation
level. The main problem with the FPN is that it degrades the
quality, accuracy and resolving power of the captured data.
This affect their applicability in several situations, such as in
pattern recognition. Moreover, the FPN tends to drift slowly
in time, thus a single calibration procedure may not suffice.

In order to remove the FPN, several nonuniformity cor-
rection (NUC) techniques have been developed throughout
the years. The typical mathematical model for the IRFPA is
presented as follows: for the (ij)th detector in the array we
have that

Yij(n) = Aij(n)Xij(n) +Bij(n) + Vij(n) , (1)

where Yij(n) is the readout data and Xij(n) is the true input
irradiance captured during the n-th frame. Aij(n) is associated
to the gain of the detector, mainly due to the responsivity,
and Bij(n) is associated to the offset of the detector, mostly
related to the dark current. Finally, Vij(n) represents the
temporal noise, typically introduced at the readout electronics
stage.

Considering the affine model given in Eq. (1), if we take
a pair of images for two different but constant temperatures,
namely T1 and T2, we can compute the parameters associated
to each (ij)th detector, and thus compensate for them. This
NUC correction procedure is known as two-point calibration
(TPC), where the nonuniform gain and bias parameters can
be obtained by

Aij =
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ij − Y
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ij
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ij
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The TPC technique is the most effective option to compensate
for the FPN, in despite of being a reference-based method that
needs to halt the normal camera operation and make use of
expensive black-body radiators.

As an alternative to the reference-based NUC methods
such as TPC, exist the scene-based NUC algorithms. Such
algorithms estimate the nonuniformity parameters, i.e. gain
and offset, by using the information and statistics provided
by the readout video sequence. This estimation is made using
block of frames or in a frame-by-frame basis. Special interest
has been received by frame-by-frame methods that allow to
perform the estimation of the nonunifmormity parameters and
the compensation for the FPN in real time. Within these
methods, Harris et. al in [1] developed a recursive version
of the constant statistics NUC technique that was presented
before by Narendra et. al in [2]. The parameters are estimated
as follows:

Bij(n+ 1) = µ̂Yij (n+ 1) (3)

=
Yij(n+ 1) + nµ̂Yij (n)

n+ 1
Aij(n+ 1) = σ̂Yij (n+ 1)

=
|Yij(n+ 1)− µ̂Yij (n+ 1)|+ nσ̂Yij (n)

n+ 1

Using a different approach based on neural networks, Scrib-



ner et. al [3], [4] developed an adaptive retina-like approach
for estimating the NU parameters while simultaneously cor-
recting for the FPN. By using the inverse model of Eq. (1) for
each detector, X̂ij(n) = Ĝij Yij(n)+Ôij , the input irradiance
X̂ij(n) is constantly calculated while the parameters Ĝij

and Ôij are recursively updated using the steepest descent
algorithm:

Ĝij(n+ 1) = Ĝij(n)− η Eij(n)Yij(n) (4)

Ôij(n+ 1) = Ôij(n)− η Eij(n) , (5)

where η is a fixed parameter known as the learning rate, and
Eij(n) is the error calculated between the estimated input
irradiance, X̂ij(n) and a desired target, Tij(n). This target is
typically set as a local spatial average of the estimated irra-
diance X̂(n). The parameters Ĝij(n) and Ôij(n) are related
to the desired gain and bias as follows: Âij(n) = Ĝij(n)

−1,
and B̂ij(n) = −Ôij(n)Ĝij(n)

−1.
A modification to this algorithm was later presented in [5],

where an enhanced parameters balance is obtained by using
an adaptive learning rate ηij(n) schedule that accelerates the
convergence of the estimation process, defined as:

ηij(n) =
k

1 + σYij (n)
(6)

where σYij (n) is the local spatial standard deviation of the
input image, and k is a constant.

Unfortunately, the performance of any scene-based NUC
method can only be properly measured by comparing the
denoised images, or the corresponding estimated NUC param-
eters, with the ones obtained by the TPC method, thus needing
blackbody radiators. However, in order to avoid the use of
calibration sources, as it is the aim of any scene-based NUC
method, we need to employ some blind metric that allows to
have a good perception of the quality of the denoised images.
To the best of our knowledge, the used reference-free index
is the roughness, which is based on a measure of the rugosity
found on the denoised images. Even though it is a suitable and
useful reference-free indicator for NUC purposes, it is not a
categoric metric regarding the quality of the corrected images
and its radiometric accuracy.

Based on this fact, we present a novel alternative to evaluate
the NUC performance achieved in real-time by also only
using the denoised images. The idea is based in measuring
the distance between the expected distribution of the FPN
and the real distribution estimated by the NUC method. In
this way, instead of needing all the NU parameters, we only
request the knowledge about their first and second order
statistical moments, which can also be estimated from the
data. In this way, the proposed NUC quality index allows to
calibrate the parameters and compare the performance of any
NUC algorithm by tracking its real-time evolution, without the
requirement for calibration sources nor naked-eye evaluation.

This paper is organized as follows. In Section 2 we briefly
review the image quality metrics and we expose some of
they weakness in assessing the FPN. Next in Section 3 we
introduce the new reference free index. The ability of the

index to rank the results achieved by different NUC methods is
demonstrated using IR video sequences in Section 4. Finally,
in Section 5 we present the conclusions and some discussions
of our work, and we indicate prospective paths for future work.

2. OBJECTIVE IMAGE QUALITY ASSESSMENT

Image quality measures are figures of merit used in the
evaluation of imaging systems. The performance evaluation of
a NUC method with or without a laboratory calibration data is
a very complex task. In addition, a reference set of images is
not always available for comparison purposes. For that reason,
different metrics have been developed in order to evaluate
the NUC performance. Such metrics point to several quality
objectives such as pixel difference, correlation measure, edge
quality, spectral distance, context measure, etc.

In general, the most effective way to address the NUC
performance of a algorithm under study, is by means of
quantitative measures. The MSE and the Improvement in
Signal-to-Noise Ratio (ISNR) are widely used to asses image
quality of any imaging system, and, of course, they are also
used in NUC algorithm comparisons. Let us assume that an
image S = {sij , i = 1, . . . , p; j = 1, . . . ,m} is corrupted
in some way, generating the corrupted image C = {cij , i =
1, . . . , p; j = 1, . . . ,m}. If we have an estimation of the
non-corrupted image, Ŝ = {ŝij , i = 1, ..., p; j = 1, . . . ,m},
the MSE and the ISNR are given by, [6]

MSE(S, Ŝ) =
1

p m

p∑
i=1

m∑
j=1

(sij − ŝij)2, (7)

ISNR = 10 log
MSE(S,C)

MSE(S, Ŝ)
. (8)

The main problem with both the MSE and the ISNR is
that they require a reference-image, S, to assess how good
is the estimation process. Taking this point into the NUC
problem, we need to perform the TPC in order to obtain the
uncorrupted image, which is not always possible. Correctly,
the NUC capability is measured without using a reference by
means of the roughness parameter of an estimated image, Ŝ,
ρ, that is defined by

ρ(Ŝ) =

∥∥∥h ∗ Ŝ∥∥∥
1
+
∥∥∥hT ∗ Ŝ

∥∥∥
1∥∥∥Ŝ∥∥∥

1

, (9)

where h is a horizontal mask [1,−1], ‖.‖1 is the L1 norm,
T is the transpose, and ∗ represents the discrete convolution.
Note that ρ(Ŝ) is zero for a uniform image and increases with
the detector-to-detector variations in the image Ŝ. Moreover,
ρ can be used as a measure of NUC in real infrared data
as well as simulated data. This index can only show if the
correction is producing a smooth image or not, leaving out
any radiometric modifications. For this reason is not a really
useful metric, because must be used in conjunction with a
naked-eye evaluation.



3. REFERENCE-FREE INFRARED QUALITY INDEX

The NU problem comes from both bias and gain dispar-
ities in the IRFPA. Accordingly with the literature and our
experience, the gain nonuniformity is considered to be known
and having a small spectral variation. As a consequence, in
several NUC methodologies the gain is considered simply as
a fixed variable equal to one as in [8]. Therefore, the FPN
can be solely modeled as an additive noise, where a Gaussian
distribution with fixed variance over the whole dynamic range
of operation can be assumed.

In addition to producing dynamic range deviations, NUC
methods typically generate ghosting artifacts while reducing
the original FPN content. This problem also degrades the
quality of some corrected images, introducing image structures
into the estimated FPN statistical distribution, that differs
from any expected canonical distribution. Thus, the basic
idea behind the proposed Reference-Free Infrared Quality
Index (RIQI) is to compare the noise distribution found after
applying any NUC method, with the expected theoretical noise
distribution. This is performed by measuring the difference
(i.e. distance and shape) of the probability mass function (pmf)
between the expected FPN distribution and the measured FPN.

The RIQI can be defined considering that in any metric
vector space the inequality |a − b| ≤ |a| + |b| holds for any
two points a and b. Then, we can easily note that the ratio
between |a − b| and |a| + |b| will be always in the interval
[0,1]. Using this ratio and recalling that we need to compare
probability distributions, we can define our quality index

RIQI ,

∑k
n=1 |pN (n)− pE(n)|∑k

n=1 |pN (n)|+
∑k

n=1 |pE(n)|
, (10)

where pN (n) is the histogram that follows the noise distri-
bution generated by the FPN, and pE(n) is the histogram
of the additive NU noise estimated by the NUC method, i.e.
E = Y − X̂ . (Recall that the gain is assumed to be one.)

From our experience over several cameras that were fab-
ricated using different technologies, the noise histogram,
pN (n), can assumed as the histogram of a Gaussian distri-
bution that follows the real noise statistics. Then, the vestigial
noise E = Y − X̂ will follow a Gaussian-like statistical
distribution, i.e. E ∼ f(b, θ) were θ define the parameters
of such distribution.

The RIQI varies between 0 and 1, being 0 the best case
of adjustment between distributions, and 1 for the opposite
case. Using this information, the proposed metric is capable
of: (i) perform a comparative evaluation of the level of NU
that is being compensated by the NUC method under study,
(ii) follow the behavior of the NUC algorithm and evaluate the
radiometric stability of the corrected images in compare with
the original data, and (iii) quantify the modifications in the
dynamic range, the modifications in the image structure and
time evolution of the NUC, since is performed in a frame-by-
frame basis.

4. RESULTS OVER SIMULATED NOISE

In order to quantify the RIQI abilities, we present results
over simulated FPN, providing us the real image and the
corrupted frame. The estimation process is performed using
tree classical methodologies: the recursive version of the
constant-statistics method (RCS) [1], the Scribner NUC algo-
rithm (SNA) [3], and the enhanced Scribner method (ESNA),
[5]. The capabilities of our index are quantified using the
reference-based quality indexes MSE and ISNR, [6], and the
reference index roughness, [7].

We use the statistics of the FPN estimated from a camera
as a guide to establish the levels of noise in our simulations.
The results under this scenario are presented in the Fig. 1.

From these results it can be noted that our metric is capable
to show the adaptation process of the SNA and the radiometric
adaptation of the correction, approaching to zero accordingly
with the NUC behavior. This important result cannot be
obtained from the roughness index.

The ISNR curve indicates that the Harris correction was
suffering an error in the parameters calculation during the first
frames. This is because the image was lacking of variability,
but it fails to show the same problem with the Scribner’s
algorithm, instead the RIQI present the expected behavior of
the correction in that conditions.

In the presented results we can identify two points in the
curve, where the roughness index has local minima that allow
us to show interesting conclusions. Such frames are the 1420
and 2880. The set of images for the frame 1420 are show in
Fig. 2

Clearly, it can be observed that a better correction product
of the number of frames used to estimate the parameter and the
movement of the scene, which is represented by the behavior
of the RIQI.

The set of data is almost running out of frame 2830 but
it shows that the enhanced Scribner correction achieves a
better stability during the observed images, product of visual
corroboration of the NUC and the RIQI evolution curve.

5. CONCLUSIONS

In this work we presented a novel reference-free quality
metric for NUC. We based our metric in order to solve a
constant problem that we had during developments of our own
NUC algorithms. The problem is that the reference imagery
is commonly unavailable in order to use the reference-based
metrics that are the best alternative when you need to rank
the NUC capabilities achieved by any particular method. In
addition, the reference-free metrics that can be found in the
literature are commonly designed for images captured in the
visual-range and present the problem that they require a naked-
eye evaluation in order to assess the correct interpretation of
such metric.

As a big difference with classical metrics used in NUC
research, our metric can track the time evolution of any NUC
algorithm under evaluation. The presented curves indicate that
RIQI can clearly track the variations in the dynamic range



(a) ISNR between the SNA and TPC (b) Roughness Index

(c) RIQI

Fig. 1. Different methods and NUC-quality indexes over a block of 3000 frames.

after the estimation process. We must point out that a main
difference between our metric and the roughness index is that
RIQI works over the vestigial noise instead of the estimated
images. This fact is of major importance since if the estimation
process gives rise to a flat image, which means that the
correction does not work properly, our index will quantify
it and the roughness will not.
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Fig. 2. Set of images obtained at frame 1420 of the video sequence.
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(a) Reference Image (b) Corrupted Image

(c) NUC Correction: Harris; ISNR=-12.560 and
RIQI=0.892

(d) NUC Correction: Enhanced Scribner; ; ISNR=2.214
and RIQI=0.191

Fig. 3. Set of images obtained at frame 2830 of the video sequence.


