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The spatial fixed-pattern noise (FPN) inherently generated in infrared (IR) imaging systems compro-
mises severely the quality of the acquired imagery, even making such images inappropriate for some
applications. The FPN refers to the inability of the photodetectors in the focal-plane array to render
a uniform output image when a uniform-intensity scene is being imaged. We present a noise-cancella-
tion-based algorithm that compensates for the additive component of the FPN. The proposed method
relies on the assumption that a source of noise correlated to the additive FPN is available to the IR cam-
era. An important feature of the algorithm is that all the calculations are reduced to a simple equation,
which allows for the bias compensation of the raw imagery. The algorithm performance is tested using
real IR image sequences and is compared to some classical methodologies. © 2008 Optical Society of
America

OCIS codes: 040.3060, 100.2000, 100.2980.

1. Introduction

The most popular infrared (IR) detector packed in
modern IR cameras is the focal-plane array (FPA).
In spite of the large number of advances in this tech-
nology, FPA detectors still face a serious and undesir-
able problem, which is referred to in the literature as
fixed-pattern noise (FPN) or nonuniformity (NU)
noise. The NU noise is mainly attributable to the dif-
ferent photo response of each detector in the array
even though they receive the same IR input irradi-
ance and are fabricated using the same materials
and fabrication techniques. Moreover, the NU se-
verely degrades the quality of the acquired images
because it results in an additive and multiplicative
pattern of noise that is superimposed over the real
image. In addition, the NU noise tends to drift slowly
in time; therefore, frequent compensations for NU
are required during the operation of the camera.
In the literature, the additive and multiplicative

components of the FPN are also called bias and gain
NU, respectively.

Nonuniformity correction (NUC) has been per-
formed using calibration techniques. The calibration
is performed by placing in the field of view of the
camera a uniform-intensity calibration device.
Although calibration is the most basic, accurate,
and effective NUC method, it is undesirable in some
applications because it interrupts the normal opera-
tion of the imaging system. Moreover, calibration re-
quires the use of a blackbody radiator source, which
is expensive, heavy, and requires its own electrical
and mechanical hardware [1]. As an alternative ap-
proach, a large number of signal-processing-based
techniques have been developed to compensate for
the FPN. The main advantage of such techniques
is that they allow the continuous operation of the
camera and do not demand calibration sources. How-
ever, these methods rely on both the diversity in the
irradiance seen by each photodetector and the mo-
tion in the scene that is being imaged [1–3].

Here we propose a new signal-processing techni-
que for NUC. This technique is derived by using a
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noise-cancellation (NC) system, a well-known solu-
tion used to recover signals that are corrupted by ad-
ditive noise in audio applications. As in any NC-
based algorithm, the main assumption is that there
is available an external source of noise, which is cor-
related to the additive FPN that corrupts the IR ima-
gery [4]. In practical implementation of NC systems,
the external correlated source of noise is obtained di-
rectly from the process, which in our case involves
the use of a blackbodylike source of noise. In contrast,
in the proposed algorithm we simulate the random
process correlated with the bias NU in order to
synthesize the required source of external noise.
The simulation of this source of noise was made con-
sidering both the quasi-stationarity of the FPN and
some assumptions about its statistics. So, the NC-
based NUC technique exploits such a synthetic
source of noise to generate a replica of the additive
FPN, which is subtracted to the raw IR imagery.
As in most NC systems, a finite impulse response
(FIR) filter must be designed in order to produce
the replica of the additive noise. An interesting
and important feature of our NC-based algorithm
is that all the calculations are finally reduced to a
simple equation that allows for the bias compensa-
tion of the raw imagery. Based on this result, the
proposed methodology can be described as a general-
ization of the Harris constant-statistics (CS) algo-
rithm. Nevertheless, the simple assumptions that
we have made are not as restrictive as a zero-mean
and unity-variance input irradiance, which is an ad-
vantage of our solution. Moreover, theoretically, the
proposed algorithm does not require any kind of mo-
tion for the information that is being imaged.
The remainder of this paper is organized as fol-

lows. In Section 2 we discuss the mathematical mod-
el of the FPA and all the assumptions made in order
to simplify such a model. The design method of the
aforementioned FIR filter is described in Section 3,
where some implementation issues are also given.
The performance of the proposed methodology is
evaluated in Section 4 by using the root mean square
error (RMSE) as the main comparison metric. Final-
ly, in Section 5 we apply our algorithm to real IR se-
quences and compare it with some well-known
algorithms. The conclusions are summarized in
Section 6.

2. Mathematical Model of an IR FPA

In an IR FPA, each detector converts the incident IR
energy into electrical energy, such as current or vol-
tage. This response can be modeled as a function of
the input irradiance. Unfortunately, the input–
output characteristics of the detectors vary from de-
tector to detector, even though extreme care is taken
to manufacture detectors having similar properties.
This implies that the mathematical model must be
formulated in terms of a pixel-by-pixel characteristic,
i.e., spatially. In addition, such a model must include
the effects of both the FPN and the temporal noise.
The temporal noise refers to the noise that varies

from frame to frame and it is due to the random non-
ideal photodetection process. The FPN refers to any
spatial pattern that does not change significantly
from frame to frame. The FPN results in a multipli-
cative component and an additive component that
are superimposed over the real image. The multipli-
cative component of the FPN is due to variations in
detector responsivity (or gain), detector size, spectral
response, and the thickness of the coating of each de-
tector. The additive component of the FPN is mainly
due to the detectors’ dark current.

We have adopted here the commonly used affine
model for each photodetector [5]. Thus, the read-
out data at the ði; jÞth detector in the FPA at the
kth time sample is given by

Yi;j½k� ¼ Ai;j½k�Xi;j½k� þ Bi;j½k� þ Vi;j½k�; ð1Þ

where Ai;j½k� and Bi;j½k� are the multiplicative and ad-
ditive components of the FPN, respectively. The term
Vi;j½k� is the additive temporal noise and Xi;j½k� repre-
sents the true input irradiance collected by the
ði; jÞth detector during the integration time. The time
dependence of Eq. (1) is included for generality, but it
will be dropped later (Assumption A2).

To achieve a fairly good estimate of the true inci-
dent irradiance, let us make the following as-
sumptions:

A1
In many operational conditions, the additive FPN

dominates the multiplicative FPN [1]. This means
that compensating for the additive FPN from the
read-out data will highly improve the image quality,
generating a good approximation of the true incident
radiation. Under this scenario, we are focused
solely on the additive FPN compensation. So, let
us define the true input irradiance approxima-
tion Si;j½k�≜Ai;j½k�Xi;j½k�.
A2

We are interested in solving the NUC problem
within a short time interval, namely, within a block
of frames no longer than a couple of minutes. There-
fore, the bias temporal variations in each pixel can be
considered negligible in our model. Thus, the term
Bi;j½k� is assumed to be a deterministic constant, in
symbols, Bi;j [1]. In addition, we assume that Bi;j
can take any value in the range ½Bmin;Bmax�∩Z, with
Z the set of integer numbers, which is common to all
the photodetectors in the FPA. The rationale for this
assumption is given in Section 3.
A3

As in several approaches, the temporal noise Vi;j½k�
included in the aforementioned model will be as-
sumed to be a white zero-mean random sequence
with known variance σ2v common to all the photode-
tectors [1,5].

In light of these simplifying assumptions, Eq. (1)
reduces to
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Yi;j½k� ¼ Si;j½k� þ Bi;j þ Vi;j½k�: ð2Þ

For the sake of simplicity in the notation, from now
on the pixel subscripts i, j are dropped with the un-
derstanding that all operations are performed on a
pixel-by-pixel basis.

3. Algorithm Design

Let us refer to the block diagram of the algorithm
shown in Fig. 1. The first input to the NC system
is the detectors’ read-out data Y ½k�, which correspond
to the sum of the approximated irradiance, the addi-
tive FPN, and the temporal noise. The second input,
β½k�, is an additive noise signal, which is given by
some source of noise statistically correlated with
the additive component of the FPN. According to
the Fig. 1, by properly designing the filter HðzÞ,
the signal B̂½k� will be a good estimate of B and, con-
sequently, the system output will be a good estimate
of the irradiance approximation S½k�.
Consider that the NC system synthesizes B̂½k�

using a FIR filter with N coefficients, which we have
denoted as hk, k ¼ 0; 1;…;N − 1. Following the least-
squares FIR filter design method, we calculate the
mean-squared error (MSE) of the output as follows:

MSE ¼ Efe½k�2g ¼ RYY ½0� − 2
XN−1

i¼0

hiRβY ½i�

þ
XN−1

i¼0

XN−1

j¼0

hihjRββ½i − j�; ð3Þ

where RYY ½n� and Rββ½n� are the discrete autocorrela-
tion sequences, at the nth lag, of the signals Y ½k� and
β½k�, respectively. The term RβY ½n� is the discrete
cross-correlation sequence at the nth lag, between
β½k� and Y ½k�. The optimal filter for synthesizing
B̂½k� is given as the solution of the so-called normal
equations. In symbols:

2
666664

h0

h1

..

.

hN−1

3
777775
¼

2
666664

Rββ½0� Rββ½1� � � � Rββ½N −1�
Rββ½1� Rββ½0� � � � Rββ½N −2�

..

. ..
. . .

. ..
.

Rββ½N −1� Rββ½N −2� � � � Rββ½0�

3
777775

−1

×

2
666664

RβY ½0�
RβY ½1�

..

.

RβY ½N −1�

3
777775
: ð4Þ

Discussion. Theoretically speaking, the only condi-
tion that an NC-based estimator imposes on the es-
timation problem is that the external noise source,
β½k� in this case, must be highly correlated with
the additive FPN and uncorrelated, or weakly corre-
lated, with the approximated incident radiation. No-
tably, this requirement does not imply any restriction

over the camera movement because the incident ra-
diation and the additive FPN are not correlated: the
FPA input depends on the scene that is being imaged
and the additive FPN depends on the noise asso-
ciated with the optoelectronic processes. Therefore,
the performance of the NC-based method mainly de-
pends on the source of correlated noise, β½k�, and how
we generate this noise.

In light of the assumption that the FPN is constant
in a short period of time, i.e., among a finite number
of frames, a simple and efficient way to obtain such
an external signal, β½k�, is to approximate the raw IR
of a blackbody radiator by using a (software) simu-
lated blackbody radiator. To this end, the spatially
uniform part of the radiator is modeled by a constant
number for all the pixels, while the FPN is simulated
by determining an appropriate spatial distribution
for the noise. To complete the specification of the si-
mulated source of noise, it suffices to specify the spa-
tial distribution of the FPN.

Let us mention some sources of noise that generate
the FPN. The additive component of the FPN is
mainly due to the detectors’ dark current, which is
kept almost constant and does not vary from frame
to frame.Moreover, the FPN is also due to differences
in detector sizes, doping density, and foreign matter
that gets trapped during fabrication, all of which give
rise to both temperature dependence, showing
fluctuations that create pattern noise, and offset vol-
tages due to the on- and off-chip amplifiers used on
the FPA.

With this background, we can see that we do not
have control or knowledge of several factors and
sources that give rise to the FPN. Therefore, its sta-
tistical model cannot be obtained in an accurate way.
This is mainly due to the multiple sources of noise
that generate the FPN, their complex interaction,
and the detector-dependent characteristic of the
FPN. In addition, the pattern of the noise depends
strongly on the design and manufacture of the
FPA. In light of these difficulties, in this work we
have assumed that the simulated additive FPN that
corrupts the uniform data, at each pixel, is an un-
known, discrete, deterministic, and constant para-
meter within the time window of a block of frames
(Assumption A2). Moreover, it has been assumed
that the simulated FPN lacks spatial correlation be-
tween pixels. So, a simple yet effective manner to si-
mulate the additive FPN is to consider a matrix of
random variables spatially uncorrelated and follow-
ing a uniform distribution with known common
range: ½βmin; βmax�∩Z. It must be noted that in [6]
we employed such a model for the FPN, obtaining

Fig. 1. Block diagram of the NC-based algorithm.
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good results. As a practical matter, our experience
with the problem shows that the range ½βmin; βmax�
can be selected from the dynamic range of the camera
under analysis.
In Subsection 3.A we exploit the fact that at each

pixel β½k� is constant within the time window re-
corded. Hence, we can evaluate the NC-based meth-
od in order to obtain an explicit expression for the
sequences of filtered images. This implies that all
the calculations will be reduced to a simple formula,
which is an important issue for future hardware im-
plementation.

A. Algorithm Simplification

Let us assume that, during a sample time of K
frames, the (software) simulated additive noise β½k�
takes a certain value, say β0 with β0 ≠ 0. Then, using
the definition of the autocorrelation and cross-corre-
lation sequences, the required correlation functions
at the nth lag are given by

Rββ½n� ¼ β20
�
1 −

n
K

�
; RβY ½n� ¼ β0

�
1 −

n
K

�
�YK−n;

ð5Þ

where �YK−n stands for the sample mean of the read-
out signal when the samples from k ¼ 0 up to k ¼ K −
1 − n are considered, in symbols: �YK−n ¼ ðK − nÞ−1P

K−1−n
k¼0 Y ½k�. Plugging Eq. (4) into the expression

for the error e½k� and recalling that e½k� ¼ Ŝ½k� we ob-
tain, after some algebraic manipulation, a simple for-
mula for the estimate of the approximate irradiance:

Ŝ½k� ¼ Y ½k� −K �YK þ ½K − ðN − 1Þ��YK−N

2K − ðN − 1Þ : ð6Þ

Notably, the estimator depends solely upon the ob-
served data, the size of the block of frames, K , and
the number of filter coefficients, N, of the filter h½k�.
In addition, note that the sequence of compensated

images does not depend on the value β0 and, more-
over, for fixed K and N, the estimated additive NU
is a constant number. This result is in agreement
with the assumption that the additive NU is constant
within the time window under study. Note that using
one filter coefficient (N ¼ 1), the proposed algorithm
reduces to Ŝ½k� ¼ Y ½k� − �YK , which means that the es-
timated bias is given by B̂ ¼ �YK, recalling the well-
known Harris CS NUC method. However, our meth-
od does not impose the requirement of zero mean and
unit variance for the IR input irradiance, which are
the most restrictive assumptions in Harris’ algo-
rithm [5].
Thus, the main advantage of our NC-based method

is the reduction of all the required computations to
an explicit equation that was obtained from the as-
sumption on the statistical spatial distribution of
the additive FPN. Furthermore, the simplicity of
Eq. (6) produces an algorithm that is easy to imple-
ment in practice.

4. Performance Evaluation

According to Eq. (6), two parameters can be used as
control knobs in our algorithm: K , the number of
frames used to calculate the sample mean, and N,
the number of filter coefficients in the FIR filter.
We study now the impact of these two parameters
on the noise compensation capability of our algo-
rithm. To assess performance, the RMSE between
the true and the estimated irradiance will be used
as a quantitative metric of NUC. Mathematically,
the RMSE at the kth frame is defined as

RMSE½k� ¼
�
1
PQ

XP−1
i¼0

XQ−1

j¼0

ðSi;j½k� − Ŝi;j½k�Þ2
�1

2

; ð7Þ

where P and Q are the number of detectors in the
FPA. The term Si;j½k� (correspondingly, Ŝi;j½k�) is the
true approximated input irradiance (correspond-
ingly, the estimate of the approximated irradiance)
at the ði; jÞth pixel. The true quantity Si;j½k� was ob-
tained using a two-point calibration method with
blackbody radiators. Note that the RMSE is actually
an average RMSE over all pixels in a frame. Of

Fig. 2. Average RMSE per pixel as a function of (a) both the num-
ber of filter coefficients and the number of frames in each block and
(b) the number of frames in each block.
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course, the lower the value of RMSE, the better the
NUC achieved.
For our tests we used outdoor midwave IR (3–5 μm)

videos collected at 1 p.m. on a sunny day using an
InSb-FPA-based cooled camera (AMBER Model
AE-4128). Each video was collected at a sample rate
of 30 frames per second (fps), and each frame has a
size of 128 × 128 pixels, where each pixel is quantized
in integer values using 16 unsigned bits. The NUC
capability of the algorithm was evaluated using dif-
ferent block lengths, in particular, K ∈ f400; 500;
…; 1500g. In addition, we considered the following
values for the number of filter coefficients: N ∈
f1; 2;…; 10g. The RMSE, averaged one more time
over the sample time, is shown in Fig. 2 as a function
of both the number of filter coefficients and the
length of the block. It can be seen that the RMSE
for a fixed block length is almost insensitive to the
number of coefficients. For this particular case, we
will choose N ¼ 10 as a good reference. According
to these results, the parameters yielding the best per-
formance are K ¼ 1300 frames and N ¼ 10 coeffi-
cients. Note that the raw IR data has an average
RMSE of 0.1435, while, after the NUC, the average
RMSE was reduced to 0.0765. Our results confirm

the accuracy and robustness of the proposed method
to estimate the additive FPN.

5. Applications to Real Infrared Image Sequences

The algorithm was tested using IR data captured
with the AMBER camera and using the best set of
parameters obtained in the previous section. A sam-
ple uncorrected frame taken from the video sequence
as well as the FPN compensated versions of it using
two-point calibration and the NC-based algorithm
are shown in Figs. 3(a)–3(c).

Using the RMSE as a metric, we have compared
our algorithm with two classical NUC methodolo-
gies: the Harris CS algorithm [5] and the Hayat
adaptive statistical algorithm (ASA) [7]. As a refer-
ence, we considered a laboratory two-point correction
of the raw imagery. The main results of such a study
are shown in Fig. 3(d). It can be seen that the NC-
based algorithm has performance similar to that ob-
served for the CS methodology, but the difference
with CS is that our assumptions are weaker than
the ones made in CS. Namely, we do not impose a
zero-mean Gaussian distribution to the approxi-
mated irradiance.

Additionally, we evaluated our algorithm and its
NUC capabilities in another spectral window. We

Fig. 3. (a) Sample raw image captured with the AMBER camera. The image in part (a) compensated for FPN using (b) two-point cali-
bration and (c) the NC-based algorithm. (d) The RMSE at the k frame between the reference image and its corresponding corrected ver-
sions obtained using the NC-based algorithm, the CS algorithm, and the ASA algorithm.
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considered a second set of data corresponding to a
7–14 μm IR indoor imagery. For the correction, we
kept the same parameters used for the AMBER
camera case, i.e., K ¼ 1300 and N ¼ 10. This new
set of data was captured at around 3 p.m. using an
uncooled HgCdTe-FPA-based camera (FLIR Merlin)
at a rate of 30 fps. The FPA size is 320 × 240 pixels
and each pixel is quantized in integer values using
8 unsigned bits. The NUC capability of our algorithm
for this IR imagery is depicted in Fig. 4. Note that the
NU noise in the FLIR camera is much more severe
than the NU noise in the AMBER camera. In spite
of this, a simple naked-eye evaluation shows that
the FPN has decreased significantly after the appli-
cation of our filter; i.e., the image quality was im-
proved to an acceptable level.

6. Conclusions

We have developed a scene-based NUC technique
based on a NC system that compensates the additive
component of the FPN. The main contribution of our
solution is that it exploits a well-known solution for
noise reduction in audio applications. In conjunction
with some nonrestrictive assumptions, we developed
a NUC algorithm where all the required computa-
tions are implemented in a single and simple equa-
tion. Based on both the excellent results obtained in
two different technologies and that all the calcula-
tions are summarized in a single equation, we state
that our algorithm could be a good solution for hard-
ware implementation of the NUC problem.
The performance of our algorithm depends essen-

tially on the number of frames used in the NUC and
does not impose any further restriction on the IR
data that is being imaged. Results obtained over
mid- and long-wave IR data show the NUC ability
of the algorithmwhere, according to a naked-eye eva-
luation, an excellent image quality is achieved.
Although the effectiveness of our methodology to re-
duce the FPN and compensate for artifacts, such as
dead pixels, was shown in the examples, our algo-
rithm exhibits the presence of ghosting artifacts,
as does almost every scene-based NUC algorithm
available in the literature. Therefore, for future im-
plementation some deghosting techniques, such as

the one used in [8], could be included in the devel-
opment.

Even though the NC-based method recalls the
Harris CS algorithm, it does not require any assump-
tion on the zero mean and unit variance of the input
irradiance, which is the most restrictive assumption
made by Harris. Moreover, it is easy to check that our
method is actually a biased estimator of B, while CS
is unbiased. The presence of bias in the estimate is
not an issue related to the NC-based method; it is
simply a consequence of the ill-posed nature of the
NUC problem. Given that scene-based NUCmethods
employ no reference to perform the estimation, the
resulting estimators suffer bias unless further as-
sumptions are made, like in the case of CS where
zero mean is assumed for the input irradiance.

In future work we will simulate a much more rea-
listic version of the FPN by introducing some spatial
correlation among the pixels of the simulated black
body, the effect of the additive temporal noise, and
the time variation in the FPN when a long time win-
dow is considered.
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