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ABSTRACT

In this paper a novel nonuniformity correction method that compensates for the fixed-pattern noise (FPN)
in infrared focal-plane array (IRFPA) sensors is developed. The proposed NUC method compensates for the
additive component of the FPN statistically processing the read-out signal using a noise-cancellation system.
The main assumption of the method is that a source of noise correlated to the additive noise of the IRFPA is
available to the system. Under this assumption, a finite impulse response (FIR) filter is designed to synthesize
an estimate of the additive noise. Moreover, exploiting the fact that the assumed source of noise is constant
in time, we derive a simple expression to calculate the estimate of the additive noise. Finally, the estimate
is subtracted to the raw IR imagery to obtain the corrected version of the images. The performance of the
proposed system and its ability to compensate for the FPN are tested with infrared images corrupted by both
real and simulated nonuniformity.

Keywords: Focal-Plane Arrays, Nonuniformity Correction, Noise-Cancellation System, Additive Noise, Fixed-
Pattern Noise.

1. INTRODUCTION

The nonuniformity is an undesirable problem present in infrared (IR) focal-plane arrays (FPA), which manifest
itself as a different response at each detector, even though they receive the same input irradiance and they were
fabricated with the same material and technique. Therefore, an IRFPA system can show significant differences
in its responsivity, gain and noise, which produces the usually called Spatial Noise. Other deterioration factor
that is inherent to the detectors, is the electronic or thermal noise which is commonly called Temporal Noise

and it is produced in the semiconductor devices due to the random flow of carriers and the interaction among
them. With this background, the problem could be divided in two components: (i) an additive temporal noise
which varies frame to frame, and (ii) an almost-time-invariant, compared with the additive temporal noise,
additive and multiplicative spatial-noise usually called Fixed-Pattern Noise (FPN).1–3 In the literature, the
additive and multiplicative components of the FPN are also called the gain and the bias NU, respectively.
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Several techniques has been developed to perform the nonuniformity correction (NUC), nevertheless the
problem is still challenging without a complete solution. One of the most basic and effective solution is the
radiometric calibration of the camera.4,5 Radiometric calibration is achieved by using one or more black-body
radiators or similar sources of temperature, but in some cases it is not useful enough because it involves the
interruption of the camera’s operation. To avoid such disadvantages, signal-processing techniques has been also
developed. These methods rely on both the diversity in the irradiance integrated by the IRFPA and the motion
of the scene that is being imaged.6–8

This paper proposes a new signal-processing technique based on the well-known noise-cancellation (NC)
technique, which is used to recover signals corrupted by additive noise as in the case of loudspeaker telephone
systems in cars and echo path cancellation in telephone networks among others applications.9 Our proposed
NC-based NUC method relies on the main assumption that the additive component of the FPN in an IRFPA
is correlated to some additional source of noise available to use. Thus, given this additional source of noise,
we synthesize a replica of the bias NU by means of an finite impulse response (FIR) filter, whose coefficients
are designed in order to minimize the mean-square error (MSE) between the bias NU and the supplementary
source of noise. In addition, given that the supplementary source of noise is constant in time, we take advantage
of this situation to obtain an explicit formula to calculate the estimate of the bias NU. Such estimate is then
subtracted from the raw IR imagery to obtain sets of images compensated for the additive component of the
FPN.

2. NOISE SOURCES ON AN IR-FPA

As in any sensors and arrays, the IRFPA performance assessment requires the identification and quantitative
representation of its noise sources, especially when the elimination of these sources is desired.

Every single detector has some known sources of noise like johnson, shot and flicker noise, but for a complete
FPA system, there are some additional sources that also must be consider, and mainly there are given by FPA
temporal noise, FPA spatial noise, and the readout noise given by the output electronics.1,2

The temporal noise varies frame-to-frame, whereas FPN does not, and depending of the technology used
in the fabrication of the detectors and the readout structure, it could varies pixel-to-pixel.2 Temporal readout-
noise and dark-level noise are not function of sensor exposure. However quantum noise depends of the input
infrared irradiance.1 The quantum noise is given by a non-ideal photo-detection process and it is determinate
by the pixel exposure, the pixel spacing and the quantum noise factor which (for a given exposure) is the ratio
of measured quantum-noise variance to shot-noise variance. It represents the excess noise not accounted by
Poisson statistics. A factor which gives rise to the departure from the ideal photodetection is the presence of
gain in the sensor (more than one carrier is generated for a single photon interaction). The additive temporal
noise has its origin in the FPA dark current, for its temperature dependence, and in the readout circuitry,
including the readout amplifier and poor charge-transfer efficiency (CTE), which is the ability to transfer all
the charge from one step to the next.2

The fixed-pattern noise refers to any spatial pattern that does not change significantly from frame-to-
frame, and it is due to differences in detectors size, doping density and foreign matter getting trapped during
fabrication. The multiplicative FPN is due by the FPA photoresponse nonuniformity, which means that the
responsivity (when light is applied) varies from detector to detector. This implies that it is produced by pixel-
to-pixel differences in responsivity or gain, the detector size, spectral response and thickness in coatings of each
detector. The additive FPN is due mainly by the dark current which is kept almost constant and does not vary
frame-to-frame by its dependence to the temperature, showing up fluctuations which creates a pattern noise,2

and by the offset voltages due to the amplifiers used (on-chip and off-chip) which consist in two components:
1/f noise and white-noise.



In Table 1 we list a summary of the principal noise types and its dependence to the incident radiation in the
detectors. This gives rise to the mathematical linear model of the FPA which will be discuss in the following
section.

Table 1. Principal noise types and its dependence with the incident radiation

Dependence Noise type

Temporal Additive Readout noise (amplifiers and poor charge-transfer efficiency).
Multiplicative Quantum noise.

FPN Additive Dark-level and some readout patterns.
Multiplicative Responsivity.

3. MATHEMATICAL MODEL FOR FPN IN IR-FPA

3.1. Detector’s Mathematical Model

In an IR-FPA each detector converts the incident infrared energy at the input into electrical energy like current
or voltage information at its output. Unfortunately the input-output characteristics of detectors vary from
one detector to another, in spite of the fact that they were fabricated under identical conditions. In addition,
the characteristics of the same detector might drift over time because of changes in external conditions, and
generally it cannot be modeled accurately in a deterministic fashion.8

As was stated in the previous section, the detector’s response is usually modeled as a first-order relationship
between the input irradiance and its output, which includes gain and bias for each detector resuming the
different noises present in the FPA system. Then, for the (i, j)th detector in the FPA, the k-th time-sample can
be expressed as:

Yi,j [k] = Ai,j [k] · Xi,j [k] + Bi,j [k] + Vi,j [k] (1)

where Ai,j [k] and Bi,j [k] are the gain and the bias of the (i, j)th detector, Vi,j [k] is the additive temporal
noise and Xi,j [k] represents the true irradiance. Moreover, according to the Table 1, the relationship between
each variable and which really represents can easily addressed. This means that the gain Ai,j [k] represents
both quantum and responsivity noises, the offset Bi,j [k] represents the detectors’ dark-level and some readout
patterns given by the readout technology, and finally the temporal noise factor Vi,j [k] represents the readout
problems like poor charge-transfer efficiency and reset noise given by an undesirable number of electrons which
stay in the capacitor after the lecture.

As in several approaches, we will introduce some simplifications to the aforementioned model. Firstly, the
temporal noise will not be considered in the formulation of our algorithm. In addition, given that the algorithm
will be developed over a block of frames representing no more than a few minutes, the gain and bias variations
within the block in each pixel will be also consider negligible, thus Ai,j [k] ≈ Ai,j and Bi,j [k] ≈ Bi,j .

8,10 We will
synthesize the additive component of the FPN, so let us define Si,j [k] = Ai,j ·Xi,j [k], which indirectly involves the
assumption that the gain is constant and equal to unity among all detectors and it is due to the observation that
in many operational conditions, the bias-nonuniformity typically dominates gain-nonuniformity.8,11,12 Under
these simplifying assumptions, the Equation (1) reduces to

Yi,j [k] = Si,j [k] + Bi,j , (2)

which will be used in the development of our algorithm. Finally, to simplify the notation, from now on the pixel
superscripts i, j are dropped out with the understanding that all operations are performed on a pixel-by-pixel
basis.



Figure 1. Block diagram of the Noise-Cancellation–Based algorithm.

4. THE NOISE-CANCELLATION–BASED NUC ALGORITHM

Let us consider the block-diagram shown in Figure 1, where the input signal Y [k] is the superposition of the
additive component of the FPN, B, and the product between the gain and the true irradiance, S[k]. Assume
that the signal β[k] is statistically correlated to B, i.e., assume that a source of noise statistically correlated
to the additive component of the FPN is available to the system. If the filter’s output, G[k], is a fairly good
approximation of B, then the output error will be a good estimation of the true irradiance, e[k] = Ŝ[k].
Therefore, we can estimate the additive component of the FPN by properly designing the filter, and thus
obtaining an estimation of the true irradiance S[k] at the system’s output. Clearly, the analysis relies on
the assumption that B can be estimated from β[k]. This assumption is not restrictive, but it imposes the
requirement that β[k] must be a signal with the same statistics as B, consequently, the performance of the
NC system strongly depends on the correlation between them. According to the previous assumption that the
bias is constant among the time-window considered, the correlated noise should be assumed constant too, thus
β[k] ≈ β.

4.1. Least-Squares Design of the Bias Compensator

Let us consider now that the NC system synthesize G[k] using a LTI FIR filter with N coefficients denoted by
hk, k = 0, . . . , N − 1. Assume also that for the time-window considered, Y [k] and β are stationary random
processes. Thus, according to least squares theory we calculate the MSE of the estimate of B as:

MSE = E
[

e[k]2
]

= φY Y [0] − 2
N−1
∑

i=0

hiφβY [i] +
N−1
∑

i=0

N−1
∑

j=0

hihjφββ [i − j] (3)

where φY Y [n] and φββ [n] are the autocorrelation sequences of Y [k] and β, respectively, and φβY [n] is the
cross-correlation sequence between β and Y [k].

During the design process, we are looking for the vector of optimal filter coefficients, h∗

N , that minimize
the error between G[k] and B in the mean square sense. So, after taking first order partial derivatives of the
Equation (3) with respect to every hk and setting them equal to zero, we obtain a system of N linear equations
for the filter coefficients. The system of equations as well as its solution can be written in matrix form as:

Φββ · hN = ΦβY (4)

h∗

N = Φ−1
ββ · ΦβY , (5)



where:

Φββ =















φββ [0] φββ [1] φββ [2] · · · φββ [N − 1]
φββ [1] φββ [0] φββ [1] · · · φββ [N − 2]
φββ [2] φββ [1] φββ [0] · · · φββ [N − 3]

...
...

...
. . .

...
φββ [N − 1] φββ [N − 2] φββ [N − 3] · · · φββ [0]















hN = [h0 h1 h2 . . . hN−1]
T

ΦβY =
[

φβY [0] φβY [1] φβY [2] . . . φβY [NB − 1]
]T

.

In most of the NC based systems, the signal corresponding to the source of noise correlated to the additive
noise corrupting the SoI is obtained directly from the process. In our case, a situation like that implies the
use of an uniform source that images the array, i.e., a black-body radiator. The novel approach introduced
in our NC based method is that we simulate a black-body radiator source creating a block of spatially flat
and temporally constant block images of length K frames. So, using the assumption on the stationarity of the
random processes modeling each noise component, we corrupt a block of spatially flat and constant in time
images adding a random constant that is assumed to be the source of correlated noise.

Given that β is a random constant during the time-window considered, we can exploit this fact in order
to obtain an explicit expression for the sequence of filtered images. Assume that the random process β takes
the particular value β0, β0 6= 0, for any pixel in the array during the time interval corresponding to K frames.
Using the definition of the auto- and cross-correlation sequences, it is straightforward to derive that φββ [k] and
φβY [k], at the kth lag, are given by

φββ [k] =
β2

0(K − k)

K
, φβY [k] =

β0

∑K−1−k

i=0 Y [i]

K
=

β0(K − k)ȲK−k

K
, (6)

where ȲK−k stands for the temporal average taken from the sample number i = 0 upto the sample K − 1 − k.
Therefore, the solution of the system of linear equations (5) can be written as h∗ = 1

β0

Λ−1
N · vN , where the

matrix ΛN and the vector vN are given by

ΛN =















K K − 1 K − 2 · · · K − (N − 1)
K − 1 K K − 1 · · · K − (N − 2)
K − 2 K − 1 K · · · K − (N − 3)

...
...

...
. . .

...
K − (N − 1) K − (N − 2) K − (N − 3) · · · K















,

vN =













KȲK

(K − 1)ȲK−1

(K − 2)ȲK−2

. . .

(K − (N − 1)) ȲK−(N−1)













.

Furthermore, using matrix notation we can write the output of the NC system as

Ŝ[k] = Y [k] − (h∗)T











β[k]
β[k − 1]

...
β[k − (N − 1)]











= Y [k] − vT
NΛ−1

N 1N , (7)



where the superscript T stands for vector and matrix transposition and the vector 1N is an all-ones column
vector of dimension N . Note that the sequence of compensated images does not depend on the value of β0, and
moreover, for fixed K and N vT

NΛ−1
N 1N is a constant number. A tedius but straightforward calculation, which

starts with the matrix Λ and uses the blockwise matrix inversion, lead us to the final expression that is used
to compensate for the bias nonuniformity at every pixel of the IR-FPA

Ŝ[k] = Y [k] −

(

KȲK + (K − (N − 1)) ȲK−(N−1)

2K − (N − 1)

)

. (8)

Note that for the special case N = 1, Equation (8) is Ŝ[k] = Y [k] − ȲK . Recalling that B ≈ ȲK , then the
proposed NC-based method turns out to be equivalent to the constant statistics algorithm compensating only
for the bias nonuniformity.6,7

5. PERFORMANCE ANALYSIS OF THE NC-BASED ALGORITHM

There are two parameters that can be accustomed in this method: the number of frames used to calculate the
cross-correlation between the read-out data and the source of correlated noise (K), and the number of taps of
the FIR filter used to synthesize the additive noise (N). Hence both will be analyzed in attempt to determinate
the best algorithm design.

The set of data used in our calculations corresponds to mid-wave IR (3-5 µm) imagery, collected at 1 PM,
using a InSb-FPA–based cooled camera (AMBER Model AE-4128). Each image, captured at the rate of 30
fps, has a size of 128×128 pixels and each pixel is quantized in integer values using 16 unsigned bits. In order
to study the effect of the block length on the performance of the filters, we varied the parameter KB from 900
to 1400 frames in increments of 100 blocks. In addition, we also used different number of filter coefficients,
N ∈ {1, 2, 3, 4, 5} for every block length considered. The performance metric used is the average, over all pixels
and over all frames, MSE between the estimate Ŝ[k] and the actual irradiance, X[k]. In this paper, the actual
values of irradiance were obtained compensating for nonuniformity blocks of images using a two-point calibration
method. We performed around one hundred trials of Monte-Carlo simulations per experiment, and all the results
obtained correspond to the averaged values of the considered metrics over the total number of trials. Our results
confirm the accuracy and robustness of the proposed method to estimate the FPN components.

In Fig. 2(a), the results obtained for the evaluation of the number of filter coefficients are depicted. It can
be seen that that the average MSE per pixel of the irradiance is almost insensitive to the number of coefficients;
this suggests that only one coefficient per filter is enough to attain a good estimation of the noises. Note that
the minimum average MSE per pixel is achieved when K = 1300, i.e., using a large number frames does not
improve the performance of the system. This result is in agreement with the well-known side effect of signal-
processing–based nonuniformity correction: ghosting artifacts. Increasing the number of frames improves the
nonuniformity correction until some point, after that the new information added to any method produces the
effect of imposing artifacts on the compensated images, thereby reducing the performance, which in our case
increases the average MSE per pixel. In Fig. 2(b) we show the average MSE per pixel of the irradiance as a
function of the block length at the output of the proposed method. In this simulation, we fixed the number of
coefficients to N = 1. It can be seen that the optimal value effectively is obtained in a time-windows given by
K = 1300 frames.

6. APPLICATION TO IMAGE SEQUENCES WITH SIMULATED BIAS
NONUNIFORMITY

Taking a block of frames previously cleaned with two point calibration and corrupting it with known-bias
nonuniformity, the filter is applied in attempt to determinate its capability of remove the additive components
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Figure 2. Variations of the Average MSE per pixel by the variation of: (a) Numer of taps of the FIR filter, and (b)
Number of frames used to calculate the correlation.

in an artificially corrupted image sequence. The bias is generated as a constant random variable spatially
distributed among the normalized camera dynamic range. These parameters are applied over the entire block of
previously-cleaned data, which indirectly implies the assumption that the bias nonuniformity is constant amid
the block of frames.

The results for different levels of additive noise applied over the AMBER’s data are presented, comparing
the output image with its raw version and calculating the MSE with respect to the radiometrically corrected
imagery. Derived from the previous analysis, the NC-based algorithm was implemented with a one-tap FIR
filter and using a block of 1300 frames to calculate the correlation between the different variables. The different
values of the metric MSE are also revealed in the Fig. 3 for 10%, 50% and 100% of added noise. These
percentages represent the weight of the simulated bias over the normalized dynamic range of the cameras.

To evaluate the performance, the average MSE was used as a metric of the estimation process: The corrupted
imagery with 10%, 50% and 100% show an average MSE of 0.3876, 0.4778 and 0.5022 respectably and their
corrected versions present an average MSE of 0.0516, 0.0554, and 0.0583. Based in both the naked-eye evaluation
of the Fig. 3 and the MSE obtained for each case of corrupted level, the performance of the algorithm eliminating
an additive component of noise could be consider successful. Therefore, for this implementation the propose
method has shown a very good performance as well as robustness related to the chosen distribution for the
additive noise nonuniformity.

7. APPLICATION TO REAL INFRARED IMAGE SEQUENCES

The algorithm was tested using IR data taken with the AMBER camera, where four different block length’s
were used to calculate the filter coefficients of the gain compensator, namely, KA ∈ {100, 400, 800, 1300}. The
filter was implemented with only one tap N = 1 according to the previous filter analysis. In Figs. 4(a)-(f) we
show a sample image an its corresponding corrected versions obtained in our Monte-Carlo trials. Based on a
naked-eye evaluation, the effect of the block length on the image quality of the corrected images is important
for little block length’s (K = 100 and K = 400) but it is not distinguishable for high block lengths (K = 800
and K = 1300); nevertheless, the average MSE effectively is reduced: the average MSE between the two-point
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Figure 3. Correction of Simulated Bias Nonuniformity for the AMBER camera corresponding to the k = 100th frame.
(a) Corrupted Frame with 10%, (b) Corrupted Frame with 50%, (c) Corrupted Frame with 100%, (d) Frame with 10%
of simulated bias corrected, (e) Frame with 50% of simulated bias corrected, and (f) Frame with 100% of simulated bias
corrected

calibrated image and the compensated images was 0.1363 for K = 100, 0.0941 for K = 400, 0.0733 for K = 800
and 0.0566 for K = 1300.

The algorithm was also tested using a second set of real IR data in order to evaluate its performance and the
data dependency of the design. The second set of data used corresponds to 7-14µm IR indoor-imagery, collected
at 3 PM using an uncooled HgCdTe-FPA–based camera (FLIR Merlin). The frame rate for this set of data is
also 30 fps, where the frame size is 320×240 pixels and each pixel is quantized in integers values using 8 unsigned
bits. We applied the algorithm on a 128×128 subimage to reduce the total number of mathematical operations
but keeping enough information to allow a naked-eye performance evaluation. The sources of correlated noise
were specified with the following parameters β ∼ U([0, 255]), and cB = 128. For this set of data, a reference
block of images corrected using calibration techniques is not available; therefore, the best block length for
this camera was selected based on a naked-eye evaluation of the compensated images. In this experiment, we
changed the block lengths K and KB between 100 and 1500 frames per block in increments of 100 frames to
determinate some of the characteristically values of K for the correction. It is interesting to note that according
to our subjective evaluation, the best image quality is obtained for a block length of 1300 frames as well as for
the AMBER camera.

The results over this set of data are shown in Figs. 5(a)–(e), and as before, the filtered images with block
lengths of K ∈ {100, 400, 800, 1300} are depicted. Note that for the FLIR Merlin camera the nonuniformity is
much more severe as compared to the nonuniformity present in the AMBER camera. However, at the output
of the NC based algorithm, again the nonuniformity level present at the compensated image has decreased
significantly, improving the visual quality of the image to an acceptable level.

Finally, in order to obtain a quantitative measurement on the performance of the proposed algorithm we
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Figure 4. A sample IR image from the block of data of the AMBER camera corresponding to the k = 100th frame. (a)
The raw image. The compensated versions of the raw image using: (b) the two-point calibration method, (c) the bias
compensator algorithm with K = 100 frames, (d) the bias compensator algorithm with K = 400 frames, (e) the bias
compensator algorithm with K = 800 frames, and (f) the bias compensator algorithm with K = 1300 frames.

employ for the FLIR Merlin IR data the roughness parameter, ρ, which is computed for any image f as:13

ρ(f) =
‖h1 ∗ f‖1 + ‖h2 ∗ f‖1

‖f‖1
, (9)

where h1(i, j) = δi−1,j − δi,j , h2(i, j) = δi,j−1 − δi,j , δij is the Kronecker delta, ‖f‖1 is the ℓ1-norm of f , and
the operator ∗ represents the discrete convolution. Note that ρ is zero for an uniform image and it increases
with the pixel-to-pixel variation in the image. Note also that ρ does not require a reference image as in the
case of the averaged MSE. Figs. 6(a) and (b) show the computed roughness coefficient of each frame for two
different block lengths: K = 800 and K = 1300 for both cameras. The roughness coefficient was calculated
after normalizing each frame to set aside the best comparison. It can be seen that for both sets of data and for
the different block lengths the proposed algorithm effectively reduces the roughness coefficient as compared to
the raw images.

8. CONCLUSIONS

In this paper, we present a new scene-based NUC technique based on a NC system that compensates for bias
nonuniformity in IR imaging systems. The proposed method was reduced to the evaluation of one equation.
In light of the results, the assumptions taken regarding the statistical distribution of the FPN components
achieved excellent results despite of the uncertainty associated to the actual model of the noise. The strength
of the proposed algorithm lies in its reasonably simple assumptions, calculations and hardware requirements.
Furthermore, although the method successfully removes the bulk of the FPN in real IR data for different block
lengths and compensates for the dead pixels of the video sequence, it exhibits ghosting artifacts as almost every
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Figure 5. A sample IR image from the block of data of the FLIR Merlin camera corresponding to the k = 200th frame.
(a) The raw image. The compensated versions of the raw image using: (b) the bias compensator algorithm with K = 100
frames, (c) the bias compensator algorithm with K = 400 frames, (d) the bias compensator algorithm with K = 800
frames, and (e) the bias compensator algorithm with K = 1300 frames
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Figure 6. The calculated roughness coefficient ρ of the proposed algorithm for: (a) the AMBER camera data set; and
(b) the FLIR Merlin camera data set.

scene-based NUC. An optimal value of the average MSE is given for 1300 frames per block for both cameras
according to our judgment.

Notably the NC-based method resembles constants statistics when the LTI FIR is designed with only one
coefficient. However for the NC method it is not necessary to have an integrated infrared irradiance with zero
mean. More research need to be engage relate to motion depended and relate to simulate additive FPN with



two or tree flat images in the simulate reference sequence.
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