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Abstract 
 
We implemented a 48-tap, mixed-signal adaptive FIR 
filter with 8-bit input and 10-bit output resolution. The 
filter stores its tap weights in nonvolatile analog memory 
cells and adapts using the Least-Mean-Square (LMS) 
algorithm. We run the input through a digital tapped 
delay line, multiply the digital words with the analog tap 
weights using mixed-signal multipliers, and adapt the tap 
coefficients using pulse-based feedback. The accuracy of 
the weight updates exceeds 13 bits. The total die area is 
2.6mm2 in a 0.35µm CMOS process. The filter delivers a 
performance of 19.2GOPS at 200MHz, and consumes 
20mW providing a 6mA differential output current. 
 
1. Introduction 

 
Many modern-day electronic systems must deal with 

unknown or changing environmental variables such as 
noise levels, interference, and varying input statistics. 
These systems frequently use adaptive signal-processing 
techniques to optimize their performance. However, in 
application domains such as mobile communications or 
ubiquitous computing, these systems also face severe 
constraints in power dissipation and circuit die area. In 
such cases, using programmable digital signal-processing 
(DSP) chips becomes infeasible. Even custom digital 
circuits can be prohibitively large and power-hungry, 
mainly due to the need for fast adders and multipliers. 
Although analog circuits can implement moderate-
resolution arithmetic at low power and area, these 
circuits are limited by other problems such as charge 
leakage, signal offsets, circuit mismatch, error 
accumulation, and noise sensitivity. 

We have built a mixed-signal, adaptive, finite-impulse-
response (FIR) filter that combines the power and area 
benefits of analog with the scalability of digital. The 
filter uses synapse transistors [1] to store its analog 
weights, provides linear weight updates, and implements 
a pulse-based version of the Least-Mean-Square (LMS) 
adaptation algorithm [2]. Each of the 48 taps computes a 
multiplication and an addition on every clock cycle, for 
an aggregated throughput of 19.2 Giga-Operations Per 
Second (GOPS) at 200MHz. The filter uses 2.6mm2 of 
die area, and consumes 20mW with a 6mA differential 
output current. The input resolution (delay-line width) is 
8 bits, and the LMS circuitry updates the weights with 
more than 13 bits of accuracy. 

Our design improves on past mixed-signal adaptive 
filters [3] by two orders of magnitude in power/ 
performance ratio and one order of magnitude in die 

area. Our previous FIR filter design [4] was incapable of 
on-chip adaptation and provided only 7 bits of output 
resolution. The current design uses a weight-storage 
cell [5] with accurate updates and introduces a novel on-
chip implementation of the LMS algorithm, thereby 
enabling closed-loop operation. Our design also 
introduces new mixed-signal multipliers, achieves an 
output resolution of 10 bits, and extends the length of the 
filter to 48 taps.  
 
2. The Filter 

 
An FIR filter computes a convolution between an input 

data stream and a stored weight vector. Fig. 1(A) shows 
the architecture of our FIR filter. It comprises a digital 
delay line, analog weight cells, pulse-based digital LMS 
adaptation circuitry, and mixed-signal multipliers with 
differential current outputs (Io+ and Io–). We use an 8-bit 
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Fig. 1. The adaptive filter. Part A shows the 48-tap filter 
architecture. Each tap comprises a digital tap register, a mixed-
signal multiplier, and a memory cell that stores an analog tap 
weight and implements LMS adaptation. A spike generator 
produces a differential frequency-modulated digital pulse train 
(Se+ and Se–), representing the filter error. Part B shows a 
microphotograph of the chip core in a 0.35µm CMOS process 
available from MOSIS. The total die area is 2.6mm2. 



 

 

200MHz digital delay line to shift the input signal across 
the filter taps, because offsets and error accumulation 
make long analog delay lines difficult to implement in 
VLSI. The error signal is a differential current (Ie+ and 
Ie–). We generate this error signal by subtracting the 
filter output from the target signal (It+ and It–). A spike 
generator [6] converts the error into a differential 
frequency-modulated digital pulse train with fixed pulse-
width (Se+ and Se–) and the filter adapts the tap weights 
by correlating this error signal with the tap inputs. 

Fig. 1(B) shows a microphotograph of the chip core. 
The multipliers use 50% of the total area, the memory 
cells and LMS circuitry occupy 25%, and the digital 
delay line uses the other 25%. The following sections 
describe the main blocks of the filter in more detail. 
 
3. Mixed-Signal Multiplier 

 
Fig. 2(A) shows the 4-quadrant multiplier cell. We use 

a circuit that resembles a current-steered digital-to-
analog converter (DAC), with an array of scaled current 

sources. The scaled currents pass through differential 
pairs that implement a saturating multiply. The 
differential input voltage to each pair (Vw+ and Vw–) 
represents the analog weight. The digital input x sets the 
polarity of the weight voltage at each pair. 

We use standard current-source sizing techniques to 
achieve 8-bit intrinsic resolution. Fig. 2(B) shows the 
measured integral nonlinearity (INL) of a typical 
multiplier. Both INL and the differential nonlinearity 
(DNL) are less than 0.5LSB. The current sources occupy 
80% of the multiplier area. We can reduce this area in 
future chips using the on-chip trimming techniques that 
we demonstrated in [7]. The same techniques can also 
increase the multiplier resolution. 

Fig. 2(C) shows the multiplier output as a function of 
the weight value, for several digital input codes. The 
analysis in [8] shows that this multiplier provides 
adequate linearity for LMS adaptation for a weight range 
of 1V differential. This is corroborated by our 
experimental results in Section 6. 
 
4. Analog Memory Cell 

 
Fig. 3(A) shows our analog weight cell, based on the 

design we presented in [5]. We store each filter 
coefficient as charge on a floating gate, and update the 
charge using Fowler-Nordheim tunneling and impact-
ionized hot-electron injection [1]. Tunneling and 
injection naturally produce weight updates that are 
highly nonlinear and dependent on the weight value [9]. 
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Fig. 2. The mixed-signal multiplier. Part A shows the multiplier 
cell, which comprises a segmented 8-bit DAC-like circuit with 
5 binary and 3 thermometer bits, and an array of differential 
pairs that multiply the digital input word (x) by the differential 
output of the weight cell (Vw+ and Vw–). Part B shows the 
measured integral nonlinearity of the digital input in a typical 
multiplier. The INL and DNL are 0.35 and 0.4 LSBs, 
respectively. Part C shows the measured linearity of the weight 
in a typical multiplier. We do not have access to the differential 
weight, so we measured the single-ended representation 
centered at 3V. 
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Fig. 3. Part A shows the memory-cell architecture. We store a 
weight as a nonvolatile analog charge on the floating gate. We 
update the charge using Fowler-Nordheim tunneling and hot-
electron injection, controlled by pulses on Vtun and Vinj, 
respectively. M2 is a current source that forces a constant 
current through M1, thereby pinning the floating-gate voltage. 
Capacitor C integrates the charge updates, causing Vw to 
change by an amount ∆Vw = ∆Q/C. Because the floating-gate 
voltage is constant, feedback pulses of fixed width and 
amplitude change the charge on the floating gate by constant 
amounts, causing fixed updates in Vw. Part B shows the 
measured linearity of the memory updates with respect to the 
frequency of Vinj. We obtain similar results for pulses on Vtun. 



 

 

Our weight cell provides weight-independent linear 
updates as needed for LMS adaptation. We use feedback 
in an amplifier-like circuit to pin the floating-gate 
voltage, and integrate the floating-gate updates (i.e., 
charge) on the feedback capacitor C. The charge updates 
modify the weight value Vw. 

The weight updates have a linear dependency on the 
frequency of the digital feedback pulses. We activate 
tunneling by applying pulses to the Vtun terminal; a 
simple charge pump boosts the pulse voltage to 11V and 
causes electron tunneling through M4’s gate oxide. 
Active-low Vinj pulses inject hot electrons from M3’s 
drain onto the floating gate. The voltage at Vbias sets the 
floating-gate voltage, and thereby adjusts the relative 
strengths of tunneling and injection. We tune this bias to 
yield symmetric weight-update rates at each tap. 

Fig. 3(B) shows measured values of Vw updates as a 
function of the frequency of Vinj pulses. A single-ended 
to differential converter transforms Vw into the 
differential voltage that drives the multiplier. 
 
5. LMS Block 

 
The least-mean-square (LMS) algorithm [2] uses a 

gradient-descent method to update the weights of a linear 
filter or neural network. At each iteration, the algorithm 
updates the weights according to the equation 
 )()()()1( nenxnwnw iii λ+=+  (1) 
where wi is the weight at tap i, λ is the learning rate, xi is 
the value of the input at tap i, and e is the error. 

Fig. 4(A) shows our implementation of the LMS 
algorithm. We represent the error signal e as a 
differential frequency-modulated train of digital pulses 

(Se+ and Se–). We use these pulses to update the value 
stored in the weight cell. At the beginning of each LMS 
iteration, we preload a digital downcounter with the 
magnitude (the lower 7 bits) of the current tap input x. 
An external clock signal (CLK-LMS) drives the 
downcounter. This clock is independent of the delay-line 
clock and its frequency modulates the learning rate λ of 
Eqn. (1). The countdown defines a time window 
proportional to the magnitude of x, and the error pulses 
update the weight memory for the duration of that 
window. Hence, the number of update pulses that the 
weight cell receives during each LMS iteration is 
proportional to both the magnitude of x and the 
difference between the frequencies of Se+ and Se–. The 
sign bit of x determines the sign of the updates (i.e., 
tunneling or injection). We control the learning rate λ by 
adjusting either the gain of the current-to-spike 
frequency generators or the frequency of the LMS clock. 

Fig. 4(B) shows the weight update as a function of the 
error e (represented as a pulse count) for several values 
of the input x. We represent Se+ as a positive count and 
Se– as a negative count. Fig. 4(B) demonstrates that the 
memory-update magnitude is a linear function of the 
product of xi and e, as required by Eqn. (1). 
 
6. Experimental results 

 
For our first on-line adaptation experiment, we 

enabled a single tap in the filter, set a DC-valued digital 
input and target, and let the filter adapt. The purpose of 
this experiment was to evaluate the resolution of the 
weight updates, isolated from the effect of input 
quantization errors. After 15 iterations, the error settled 
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Fig. 4. Part A shows the LMS-update architecture. The filter 
preloads a downcounter with the magnitude (7 lower bits) of 
the digital tap-input x. While the counter counts down, the error 
pulses (Se+ and  Se–) are transformed into update pulses to 
drive tunneling and injection in the memory cell. The sign of x, 
given by the MSB x7, determines the polarity of the weight 
update. Therefore, the polarity and number of pulses updating 
the weight value depends on both the present input x and the 
present error (Se+ and Se–). Part B shows measured updates 
versus error pulse frequency e. The update is the 4-quadrant 
multiplication of the error signal e by the input value x. 
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Fig. 5. LMS performance with 24 taps. Part A shows the target 
and the output during the first 80 and last 80 iterations. Part B 
shows the RMS error. After 480 iterations, the error is 5µA, 
settling at 2µA (equivalent to 10-bit output resolution) after 
300 additional iterations. Part C shows the outputs of two 
memory cells learning the same weight value. The LMS 
algorithm compensates for mismatch across cells, so each cell 
converges to a voltage that represents the same nominal weight. 



 

 

to 10nA RMS (this measured accuracy is limited by our 
experimental setup). For a 128µA single-tap output 
range, this error corresponds to an output resolution 
better than 13 bits. This result shows that, as predicted 
by [8], the error performance of the filter is not limited 
by the weight linearity of the multipliers. 

For our second experiment, we enabled 24 taps and 
trained the filter to output a triangle wave given a square-
wave input. Fig. 5(A) shows the target and output during 
the first 80 and the last 80 iterations. Fig. 5(B) shows the 
RMS error during adaptation. The filter performance is 
limited by the input quantization, with an RMS error of 
about 5µA (full output range is 24×128µA) after 480 
iterations. As the filter continues to adapt, the error 
settles to 2µA RMS after an additional 300 iterations 
(corresponding to an output resolution of 10 bits). 
Fig. 5(C) illustrates an attractive benefit of adaptation: 
Two weight cells learning the same nominal value 
converge to different voltages because the LMS 
algorithm naturally compensates for the effects of 
process mismatch (offsets in the weight representation 
and variations in the multiplier gain). 

As a final experiment, we enabled all 48 taps and used 
the adaptive filter in a direct-sequence code-division 
multiple-access (DS-CDMA) despreading application. 
Fig. 6(A) shows the experiment, where four users share a 
CDMA channel. We encoded each user’s bit stream Ui 
with orthogonal 16-chip Walsh spreading codes, and 
added the chip streams to form a composite signal. We 
input this signal (oversampled by a factor of 3) to the 48-
tap adaptive filter, and provided it with U1’s bit stream 
as a reference. The task of the filter is to learn the 
spreading code W1 and produce U1’s original bit stream. 
An adaptive matched filter like this could be used in 
decision-feedback CDMA despreading with blind 
multiuser detection [10]. Fig. 6(B) shows the reference 
bit stream and the filter’s output, sampled after each 

complete bit frame. Because the reference is a binary 
sequence, a simple comparator can generate the user’s 
bits stream from the filter’s analog output. The filter 
learns to discriminate the bit stream after only a few 
iterations. Furthermore, as the adaptation progresses, the 
amplitude of the output becomes larger, improving the 
matched filter’s interference- and noise-rejection 
characteristics to a resolution of 10 bits. 
 
7. Conclusion 

 
We built a 48-tap, 19.2GOPS, 2.6mm2 adaptive FIR 

filter using a digital delay line, nonvolatile analog 
weights, and mixed-signal multipliers. Analog storage 
and pulse-based feedback allow us to store and adapt the 
tap weights with an accuracy of 13 bits and achieve an 
output resolution of 10 bits with a power consumption of 
only 20mW. Also, nonvolatile analog weights enable us 
to stop adaptation and operate in open loop without the 
charge-leakage problems associated with capacitor-based 
analog storage. Because we use a digital delay line, we 
can readily scale the design to add more taps. 

Future work includes reducing the area and increasing 
the resolution of the mixed-signal multipliers using the 
on-chip trimming techniques we demonstrated in [7]. 
Additionally, we will accelerate the convergence of the 
LMS algorithm by adding a decorrelating input stage as 
shown in [11]. 
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Fig. 6. LMS performance on an adaptive CDMA despreading 
application. Part A: We generated bit streams for 4 
simultaneous CMDA users (U1–U4) and encoded them using 
16-chip orthogonal Walsh codes (W1–W4). We combined the 
user chip streams, oversampled the combined signal by a factor 
of 3, and fed the resulting signal to the 48-tap filter. We 
provided U1’s bit stream as the target and let the filter learn the 
appropriate despreading code W1. Part B: The evolution of the 
output normalized to the amplitude of the reference. The filter 
learns to correctly discriminate the user’s bit stream after only a 
few iterations. 


